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Abstract.  Historical aerial photographs are an important
source for data on medium- to long-term (10�-�50 yr) vegeta-
tion changes. Older photographs are panchromatic, and manual
interpretation has traditionally been used to derive vegetation
data from such photographs. We present a method for compu-
terized analysis of panchromatic aerial photographs, which
enables one to create high resolution, accurate vegetation
maps. Our approach is exemplified using two aerial photographs
(from 1964 and 1992) of a test area on Mt. Meron, Israel. Spatial
resolution (pixel size) of the geo-rectified photos was 0.30 m and
spatial accuracy (RMS error) ca. 1 m. An illumination adjustment
prior to classification was found to be essential in reducing
misclassification error rates. Two classification approaches were
employed: a standard maximum-likelihood supervised classifier,
and a modification of a supervised classification, which takes into
account spectral properties of individual pixels as well as their
neighbourhood characteristics. Accuracy of the maximum likeli-
hood classification was 81�% in the 1992 image and 54�% in the
1964 image. The neighbour classifier increased accuracy to
89�% and 82�% respectively. The overall results suggest that
computerized analysis of sequences of panchromatic aerial
photographs may serve as a valuable tool for the quantification
of medium-term vegetation changes.

Keywords: GIS; Image analysis; Neighbour classifier; Re-
mote sensing; Vegetation dynamics.

Abbreviations: DEM = Digital Elevation Model; RMS =
Root Mean Square.

Introduction

The study of medium-to long-term vegetation
changes (10�-�50�yr) is important for understanding eco-
logical processes, notably succession (e.g. Debussche et
al. 1996; Callaway & Davis 1993; see also Bakker et al.
1996), forest degradation (e.g. Ross et al. 1994), animal
distribution changes (e.g. Berger & Baydack 1992), as
well as for the planning of vegetation and wildlife
management programs (e.g. Keane et al. 1997). One
source of data for such studies is aerial photographs;
these may have a high spatial resolution and may cover
a long time sequence. Large-scale photos (1:10�000 to
1:15�000) are available for many areas, and objects of 10
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to 20 cm in size can be identified in them (Fig. 1). High
quality panchromatic (black/white) photos can be found
for the last 50 to 60 years for many parts of the world.
Thus, aerial photos are commonly used for studies of
medium-term vegetation changes (e.g. Scanlan & Archer
1991; Callaway & Davis 1993; Frelich & Reich 1995;
Hester et al. 1996) . Past investigations have typically
employed manual interpretation of aerial photographs
to extract vegetation data. The labour-intensive nature
of manual interpretation may limit the spatial extent of
vegetation databases (Woien 1995). Manually inter-
preted maps usually have coarse spatial resolution, and
classification accuracy, which is a critical parameter for
studies of vegetation change, is not readily assessed in
this method (Biging et al. 1991). Manual interpretation
of aerial photos is assumed to be 100�% correct, which is
not true (Biging et al. 1991; Congalton & Green 1993).

Computerized vegetation classification of panchro-
matic aerial photographs has rarely been done (Stephens
1985; Short & Short 1987). In applying computerized
methods to analyse vegetation data from aerial photo-
graphs one faces several difficulties. The classification
of a panchromatic aerial photograph is a special case of
remote sensing image classification involving only one
band, the grey level. Naturally, the accuracy of common
classification methods decreases seriously when only
one band is used (Short & Short 1987). Another prob-
lem is that the illumination changes across the scene
(Short & Short 1987; Dymond 1988, 1992).

In this paper we present a computerized method for
generating time series of high resolution, accurate maps
of Mediterranean vegetation using panchromatic aerial
photographs. Our classification scheme follows Tomaselli
(1977) and includes three classes, based on vegetation
height: woody vegetation > 2.5 m (‘trees’), woody veg-
etation < 2.5 m, including shrubs, semi-shrubs and low
trees (‘shrubs’), and herbaceous vegetation, including
bare ground. The applicability of our approach is evalu-
ated using two photographs (1964 and 1992) of a test area
on Mt. Meron, Israel. The pre-classification process in-
cluded photomap preparation and illumination adjust-
ments. Two classification approaches were applied: (1)
Maximum-likelihood supervised classification and (2)  A
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classification algorithm which takes into account grey
levels of individual pixels as well as their neighbourhood
characteristics (termed here ‘neighbour classification’).
We hypothesize that accounting for the spatial aspects of
grey level distribution should increase classification ac-
curacy. Results of the two classifications are compared
with an extensive ground-truthing database.

Methods

Study area

An area of 400 ha on the northern slopes of Mt.
Meron, Upper Galilee Mountains, Israel (32∞ N, 35∞ E)
was chosen. The study area is heterogeneous in terms of
topography (altitude range 650�-�950 m) and vegetation
structure. The dominant tree, shrub and semi-shrub spe-
cies are Quercus calliprinos, Calicotome villosa and
Sarcopoterium spinosum, respectively. The entire area
has been subject to intensive grazing and tree harvesting
regimes, which have been largely reduced since 1948.
Two aerial photographs (1964 and 1992) were chosen,
and obtained from the Israel Mapping Center. Both
photos were taken in summer around noon. The scale of
the earlier photo is 1:14�000 and that of the later one is
1:12�000. Diapositives of the photos were scanned using
an RM-1 high resolution scanner (Wherli Associations).
Scaning resolution was 12�m, and thus each pixel repre-
sented 15�cm�¥�15�cm on the ground. Anthropogenic
elements – roads, settlements and agricultural areas,
which together comprised <�15�% of the study area –
were manually digitized on the photos, and excluded
from further analysis.

Photomap preparation

In the ortho-rectification process, the radial, tilt and
relief distortion inherent in aerial photos are removed,
and the photograph is registered to a planimetric coordi-
nate system (Dymond 1986; Bolstad 1992). Ground
control points were identified on both photos and in the
field. Points were measured using a Magellan ProMARK
X CP ™ GPS receiver (Anon. 1994), using the differen-
tial mode. Distance between base station and the mobile
receiver did not exceed 4 km. Data were analyzed for
differential corrections using carrier phase mode in the
Magellan MSTAR software (Anon. 1994). Accuracy of
the ground control points was estimated using four
independent triangulation points in the study area, for
which accurate coordinates were obtained from the Is-
rael Mapping Center.

DEM of the study area was prepared using a pair of
partially overlapping photos from 1992, and another
DEM of the same area was prepared using a correspond-
ing pair of photos from 1964. Both DEMs were con-
structed with ISMT® software of INTEGRAPH Inc.
(Huntsville, USA) at a spatial resolution of 10 m. Root
Mean Square (RMS) error was calculated separately for
each stereoscopic model. Each photomap was then pre-
pared using its own DEM, in order to reduce spatial
error. The Photomaps were prepared using ISIR soft-
ware (INTEGRAPH Inc.). The combined spatial error

Fig. 1. Study area. a. The entire study area in the 1992 aerial
photograph. b. Small part of the photo enlarged. Elements like
small shrubs and lines on a basketball field (bottom left) can be
distinguished.
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between the photomaps was measured by superimpos-
ing the photomaps and measuring the distance between
identical points in the two photomaps. We measured 40
such points that were identifiable on both photomaps.
This measure represents the overall spatial error that
combines all error sources on both photomaps. RMS
errors for the different stages in the preparation of the
photomaps are summed in Table�1. The photomaps
were imported to ERDAS IMAGINE® v 8.2 (Anon.
1995) for the classification processes. Pixel size of 15
cm resulted in a 500 Mb image, which turned out to be
too large for demanding analysis tasks. We therefore
used  a degradation process (ERDAS degrade function)
to set the final pixel size on both photomaps to 30 cm.

Training data acquisition

Using 10-fold enlargements of the 1992 photo, we
identified patches of trees, shrubs and herbaceous veg-
etation in the field and drew their boundaries on the
photo-enlargements. At this scale, even small shrubs
could be identified in the field. In this way we collected
signatures of the three vegetation classes defined above.
Signatures were collected from a variety of regions
throughout the study area. For the 1964 image we could
not, of course, identify vegetation elements in the field.
Training sets for the 1964 photo were therefore prepared
using an IMD digital stereo plotter (Image-Station 6400,
INTEGRAPH Inc.), which enables on-screen measure-
ment of heights of individual shrubs and trees. Vegeta-
tion elements identified in this way were used to define
signatures for their respective vegetation category.

Illumination adjustments

The major source of uneven illumination in remotely
sensed images is the topographic effect (Teillet et al.
1982). We used the ‘topographic normalization’ proc-
ess (Anon. 1995), which is based on a Minnaert model
(Teillet et al. 1982), to correct slope and aspect effects
on radiance. Preliminary results indicated that this proc-
ess improved classification accuracy in specific regions
on the photos, but decreased accuracy in other regions.
Its overall effect was a slight reduction in classification

accuracy, therefore it was not applied to the images.
While running preliminary classification trials, we

noticed another source of illumination distortions in the
images. We found a gradual increase in grey levels of
similar objects (trees, shrubs and bare rocks) from the
center towards the periphery of the photo, presumably
due to directional reflectance effects (Dymond & Trot-
ter 1997). This effect could hardly be detected by a
visual inspection of the photo, but had a crucial effect on
the classification results. The phenomena appeared on
both photos, but was more pronounced on the 1992
photo. Two standard methods (Fourier transformation
and brightness adjustments; Anon. 1995) were used to
correct this attenuation, but none of them corrected the
image successfully. We therefore developed a simple
correction algorithm, based on distance from photo center.
We identified in the field 51 oak trees that were scattered
over the whole 1992 image, and digitized their bounda-
ries on the image. For each tree we calculated the distance
and azimuth from the image center, and the mean of its
grey level values (using IMAGINE signature editor;

Table 1. Planimetric errors of the different stages in photomap
preparation, in m. The GPS measurement error is an estima-
tion, see text.

Source of error RMS Largest error

GPS measurements 0.23 0.32
1964 stereoscopic model 0.75 -
1992 stereoscopic model 0.75 -
Overall between-photomap error 1.13 1.64

Fig. 2. Mean grey level of trees, as a function of their distance
from the image center.
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Anon. 1995). A plot of mean grey level against distance
from center indicated that a linear relationship existed
between these parameters, for distances larger than 600
m, while for smaller distances no such relationship
existed (Fig. 2). Also, in the 1992 image there was a
clear difference between mean grey level of trees in
directions N and NW (315�-�360) and all other direc-
tions (Fig. 2a). Using linear regression we determined
the effect of distance from center on mean grey level
values of trees, for distances > 600 m. Regression equa-
tions were calculated separately for trees in directions
N and NW and for all other directions together (Table
2a). We used the regression parameters to calculate an
adjustment factor for each pixel based on its distance
and direction from the image center. The Arc-Info AML
language (Anon. 1996) was used to write a program for
this correction, which uses the Arc-Info GRID module
as a platform. The 1964 image was corrected in a similar
manner, with two exceptions: tree identification was
made using a digital stereo plotter as explained above,
and no directional biases were found (Fig. 2b), resulting
in a single equation (Table 2b). Fig. 3 shows the distri-
butions of pixel values in signatures derived from train-
ing sets of the three classes (trees, shrubs and herba-
ceous vegetation) on the 1992 image before and after the
illumination adjustments.

Classification methods

Two image classification methods were compared
in this study. A maximum-likelihood supervised classi-
fier (Anon. 1995) was employed using signatures of
trees, shrubs and herbaceous vegetation, derived from the
training sets. The second method is an algorithm which
accounts also for the neighbourhood characteristics of
individual pixels (termed here ‘neighbour classifier’).

Histograms of the three vegetation classes indicate
that in general, trees appear darker than shrubs, which in
turn are darker than herbs (Fig. 3). However, there is a

considerable overlap between grey level values of neigh-
bouring classes (e.g. trees and shrubs) indicating that
any threshold (e.g. the maximum-likelihood classifier)
would result in large classification errors in the overlap
range. The neighbour approach attempts to reduce these
errors, taking into account information about the spatial
arrangement of pixels with grey levels in the overlap
range. First, the image was classified into three classes
(Fig.�4): Class�1 consists of pixels which belong to
‘tree’, class 2 consists of pixels belonging to either ‘tree’
or ‘non-tree’ and class 3 consists of ‘non-tree’ pixels.
Comparing this classified image with our field based
vegetation map, we noticed that most of the tree clumps
in the image (more than 99�%) had some class-1 pixels
within their canopy boundaries (Fig. 5c). Based on this
feature, we used a ‘focal minimum’ circle window, to
tag as trees all class 2 pixels that were in a ‘proper
proximity’ to class 1 pixels. ‘Proper proximity’ was
defined as the canopy radius of a single small tree (1.5 m
= 5 pixels).

Once trees had been tagged, the same process was
applied to distinguish between shrubs and herbs. This
time, the image (except ‘trees’) was classified into three

Table 2. Results of regressing mean-tree-signature on dis-
tance-from-photo-center, for distances larger than 600 m. See
also Fig. 2.

Direction Adjusted Regression P-
R square coefficient value

a.  1992 photomap
All directions 0.61 0.027 <�0.0001
North and North-West 0.84 0.039 <�0.0001
All other directions 0.78 0.022 <�0.0001

b.  1964 photomap
All directions 0.66 0.006 <�0.001

Fig. 3. Grey level distribution of signatures of trees, shrubs
and herbaceous vegetation on the 1992 photograph, before
and after illumination adjustments.
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classes, 1: shrubs, 2: shrubs or herbs and 3:�herbs, fol-
lowed by a focal minimum window again, which tagged
as ‘shrubs’ all class 2 pixels that were in a ‘proper
proximity’ to class 1 pixels. The ‘proper proximity’
was re-defined as the radius of a single small shrub
(0.3�m = 1 pixel). Pixels which were not classified as
either trees or shrubs were then classified as herbaceous
vegetation. The main stages of the process are exempli-
fied in Fig. 5.

Ground-truthing database

Detailed ground-truthing vegetation maps for 5 plots,
200�m ¥�200 m each, were prepared in 1994. We used
ten fold enlargements of these plots on the 1992 image

to identify all vegetation elements in the field, and
delineate their boundaries on the enlargements. The
database for 1964 photo was prepared using the IMD
digital stereo plotter, as explained above for the training
data acquisition. Each woody object in five selected
plots in the 1964 image was measured, and its boundary
delineated on the photo enlargement. As with the 1992
image, ground truthing vegetation maps were prepared
for five 200�m ¥�200 m plots.

Assessing classification accuracy

Accuracy of each classification method was assessed
using random sampling of at least 80 points in each of
the five ground truthing plots. A homogeneous 3�¥�3
pixel cluster (0.9�m�¥�0.9�m) was defined as the sam-
pling unit for the accuracy assessment. Overall accuracy
was calculated for each plot separately. Differences in
accuracy between plots would indicate spatial variabil-
ity in classification accuracy. These differences were
tested using a c2 test on a 2 ¥ 5 table of correctly vs.
incorrectly classified points in each plot (Sokal & Rohlf
1981). Data from all plots were then pooled to construct
a single error matrix for each year. Taken together, 571
and 516 points were used in the 1992 and 1964 images,
respectively. The error matrix, overall accuracy, and the
k-statistic (Congalton 1991) were determined for each
classification. The Fisher exact test (Sokal & Rohlf
1981) was applied to a 2�¥�2 table of correctly vs.
incorrectly classified points in each method, to test
whether differences between the two methods were
statistically significant.

Results

In the 1992 image average overall accuracy was
81�% (cv�=�0.07) and 89% (cv = 0.01) for the supervised
and neighbour classifiers respectively (Table 3). In the
1964 image average accuracy was 54% (cv = 0.08) and
82% (cv = 0.05) for the supervised and neighbour clas-
sifiers respectively. Differences in overall accuracy be-
tween plots were not significant (c2 test, p� > 0.05) for
all images and classifiers.

The neighbour classification was significantly supe-
rior to the maximum-likelihood supervised classifica-
tion (Fisher exact test, p < 0.001 in both images). Clas-
sification accuracy for the 1992 image was significantly
higher than that of 1964 (Fisher exact test, p < 0.001 for
both methods). The error matrices for the 1992 image
(Table 4a) reveal that the largest error sources in the
supervised classification were trees classified as shrubs
and shrubs classified as herbaceous vegetation. The
neighbour method effectively reduced both error types.

Fig. 4. Thresholds for the first step in the neighbour classifier.
Class�1 corresponds to pixels belonging to trees, class 2 in-
cludes pixels that could be either trees or non-trees, and class
3 includes non-tree pixels. Gray level values larger than 100,
which were all herbaceous, are eliminated from the plot.

Table 3. Overall accuracy for individual plots.

Supervised Neighbor
classification classification

plot No.  of points overall  accuracy overall accuracy

a. 1964 image
1 101 0.58 0.88
2 95 0.57 0.85
3 111 0.47 0.77
4 104 0.56 0.81
5 105 0.53 0.81
all 516 0.54 0.82

b. 1992 image
1 83 0.71 0.89
2 103 0.83 0.87
3 128 0.85 0.88
4 137 0.84 0.90
5 120 0.80 0.89
all 571 0.81 0.89



450 Carmel, Y. & Kadmon, R.

Fig. 5. Main stages in the neighbour classification algorithm, exemplified on a small part of the 1992 image. a. The raw image. b.
Vegetation map, based on a detailed field survey. c. The image classified using the thresholds portrayed in Fig. 4. d. Final results of
the neighbour classification.
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The 1964 image was characterized by larger overlaps
between spectral signatures of vegetation classes com-
pared with the 1992 image. The largest error sources in
the supervised classification of the 1964 image were
shrubs classified as herbs and vice versa, while the
neighbour classifier has drastically reduced these
shrubs/herbs mis-classifications (Table 4b). The k-
coefficient reveals that both methods improved the
classification, compared to a random classification
(Table 5).

Fig. 6 shows a small part of the 1964 and 1992
photomaps and their corresponding vegetation maps
produced using the neighbour classifier. At this high
resolution even small trees and shrubs can be identified
and changes in individual trees and shrubs can be traced.
The vegetation maps produced for the entire study area
in 1964 and 1992 are shown in Fig. 7. A considerable
change in the vegetation during this 28-yr period emerges
from these maps. Trees increased from 2�% cover in
1964 to 41�% in 1992. Herbaceous vegetation cover has

Fig. 6. Small part of the study area; photomaps of the 1964 and 1992 images (top) and their corresponding vegetation maps (bottom),
created using the neighbour classifier. The RMS overall spatial error between the two photos is 1.13 m. Pixel size is 30 cm.
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diminished from 56�% in 1964 to 24�% in 1992. The
vegetation changes that took place in the study area
during that period were not uniform; some areas have
rapidly changed while other areas remained almost un-
changed (Fig. 7).

Discussion

The largest error type in the supervised classifica-
tion of the 1992 image was tree-shrub misclassification
(Table 4b) which corresponds to the considerable over-
lap between these classes (Fig. 3). These errors were
largely reduced when the neighbour classifier was used.
Supervised classification of the 1964 image resulted in a
relatively low accuracy (54%), probably due to larger
overlaps between class signatures. However, the neigh-
bour classifier still produced fair accuracy (82%) for
this image. We conclude that the neighbour classifier is
less sensitive to overlap between classes than a maxi-
mum-likelihood classifier, and thus may be especially
useful in cases of single-band images, where large spec-
tral overlap between classes exists.

One important advantage of a computerized ap-
proach for vegetation mapping is that accuracy of the
classification is being assessed and reported (Congalton
1991). Classification accuracy of vegetation maps based
on manual interpretation of aerial photos has seldom
been assessed, and error matrices are not reported in any
of these studies. Computerized classification of pan-
chromatic aerial photographs has rarely been performed,
and we have found only two reports of such works.
Stephens (1985) used a supervised method to classify
aerial photographs into bare sand, pasture and trees. He
reports an overall accuracy of 94% - 95%, and also notes
that there was no spectral overlap between these classes,
which might explain this high accuracy. Spatial resolu-
tion was 1.25 m; spatial accuracy was not assessed.

Short & Short (1987) used image analysis to identify
oak trees on a panchromatic photo. The classification
method was not specified, but it seems to be simple
thresholding. Spatial resolution was 3 m, spatial accu-
racy and classification accuracy were not assessed. To
account for illumination variation, they analyzed small
patches of the photo separately.

In our study, illumination adjustments, which com-
pensate for the grey values gradient appeared in the
photos, were found to be an essential stage before com-
puterized classifications may be applied to an aerial
photograph. The Minnaert model we used to correct
slope and aspect effects on radiance did not improve the
classification results, and we assume that a method
which might better account for topographic effects
(Dymond 1992) would further improve the classifica-
tion results.

Medium-term vegetation changes have previously
been studied with respect to a variety of ecological
issues, including vegetation succession (e.g. Callaway
& Davis 1993; Johnson 1994; Aaviksoo 1995), forest
degradation (e.g. Strong & Bancroft 1994; Akashi &
Mueller-Dombois 1995) and long term animal-plant
interactions (Johnston & Naiman 1990; Berger &
Baydack 1992). All of these studies constructed their
databases using manual interpretation of aerial photos.
An ideal database for such studies would cover large
areas, and have both high resolution and high spatial
accuracy. However, manual interpretation implies a
trade-off between these three requirements. Preparation

Table 4. Accuracy assessments for supervised and neighbor classifications.

Supervised Neighbor
classification classification

Reference Reference

Trees Shrubs Herbs Trees Shrubs Herbs

a. 1964 image.

Trees 73 40 5 Trees 85 32 3
Classified Shrubs 36 110 71 Shrubs 25 183 13

Herbs 8 82 108 Herbs 7 17 168

b. 1992 image.

Trees 129 17 0 Trees 156 19 0
Classified Shrubs 52 90 4 Shrubs 24 109 8

Herbs 1 33 245 Herbs 1 13 241

Table 5. k-coefficients.

Supervised classification Neighbour classification

1964 0.30 0.72
1992 0.71 0.82
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of a database covering large areas necessarily limits
both resolution and accuracy, and vice versa. This study
demonstrates that the use of computerized vegetation
classification of aerial photographs eliminates this trade-
off, and enables one to produce vegetation maps that
have high spatial resolution, high spatial accuracy and
cover relatively large spatial extent.

In most studies of vegetation change which em-
ployed aerial photographs, vegetation maps were pre-
pared by delineating polygons on the photos, and as-
signing vegetation category to each polygon as a whole.
The polygons were then transferred onto maps, usually
with the aid of a zoom transfer scope (e.g. Harrington &
Sanderson 1994; Frelich & Reich 1995). This procedure

culminates in a relatively coarse spatial resolution. In
contrast, our approach is based on assigning the type of
vegetation element (tree or shrub) to each pixel. An
advantage of this method is that it enables one to create
maps in which cover estimations can be objectively
determined for any polygon of interest (e.g. % of tree
cover for specific woodland plots) or for grid cells at any
resolution, using simple GIS tools. Moreover, confi-
dence limits can be calculated for these estimations,
using parameters derived from the respective error ma-
trices. Such maps of cover estimations for specific plots
may be useful for a variety of forestry and ecological
applications.

Fig. 7. Vegetation maps of the entire study area in 1964 and 1992. Pixel size is 30 cm.
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