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Abstract

Detection and quantification of temporal change in spatial
objects is the subject of a growing number of studies. Much
of the change shown in such studies may be an artifact of
location error and classification error. The basic units of these
two measures are different (distance units for location error
and pixel counts for classification error). The lack of a single
index summarizing both error sources poses a constraint on
assessing and interpreting the apparent change. We present
an error model that addresses location and classification error
jointly. Our approach quantifies location accuracy in terms
of thematic accuracy, using a simulation of the location error
process. We further develop an error model that combines the
location and classification accuracy matrices into a single ma-
trix, representing the overall thematic accuracy in a single
layer. The resulting time-specific matrices serve to derive in-
dices for estimating the overall uncertainty in a multi-temporal
dataset. In order to validate the model, we performed simu-
lations in which known amounts of location and classification
error were introduced into raster maps. Our error model esti-
mates were highly accurate under a wide range of parameters
tested. We applied the error model to a study of vegetation
dynamics in California woodlands in order to explore its value
for realistic assessment of change, and its potential to provide
a means for quantifying the relative contributions of these two
EIror Sources.

Introduction
The detection and quantification of temporal change in spatial
objects has been the subject of many studies during the last
decade. Change-detection studies can be found within diverse
disciplines such as geomorphology (Townsend and Walsh,
1998; Brown, 1999), landscape ecology (Turner and Gardner,
1992: Radeloff et al., 2000), urban planning (Coulter et al.,
1999), and atmospheric sciences (Rees and Williams, 1997).
These studies typically use remotely sensed datasets showing
the same geographic region at different times to measure the
extent of temporal change.

One common method for change detection is image differ-
encing (e.g., Morisette et al., 1999; Stow, 1999). In this analysis,
the unaltered digital values of an image are subtracted from the
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digital values of another image of the same area. Another com-
mon method is post-classification (e.g., Carlson and Sanchez-
Azofeifa, 1999; Carmel and Kadmon, 1999), in which change is
assessed by means of a comparison of classified images or raster
maps of an area. Change detection is one of the most successful
applications of remote sensing (Singh, 1989), but it is subject to
certain errors (Foody and Boyd, 1999). To date, no standard
accuracy assessment technique for change detection has been
developed (Congalton and Green, 1999, p. 80).

The goal of this paperis to develop and test an approach for
assessing the accuracy of multi-temporal datasets accounting
for different components of uncertainty. Our approach focuses
on classified images and digital raster maps, where pixels rep-
resent nominal attributes.

Two major sources of error are associated with these types
of spatial data sets: location error and classification error. Loca-
tion error (sometimes called “spatial error,” “positional error,”
or “misregistration”) in the context of change detection is the
misalignment between the various dataset layers. This type of
error is typically quantified using root-mean-square error
(RMSE) units (Brown, 1999). Classification error (often referred
to as “attribute error” or “thematic error”) is the error that
arises from incorrect assignment of map classes to specific
objects. Classification error is measured by counting the cases
where actual and observed classes differ and is summarized in
an accuracy matrix (also called an “error matrix”). Various
indices of agreement between the classified image and some set
of reference points can be derived from the accuracy matrix.
These include the proportion of correctly classified (PCC) pix-
els, the user and producer accuracy, and the Kappa statistic
(see review in Congalton and Green (1999), pp. 47-53). Note
that classification error may include a location error compo-
nent within it (i.e., errors caused by misregistration of the image
to the ground). However, this location component of classifica-
tion error should not be confused with the inter-image location
error because, as it is defined here, location error refers only to
the misregistration of the various maps in a time series. Of par-
ticular importance for change detection are two other sources
of error (Jensen, 2000), radiometric effects (arising from attri-
butes of the specific sensor being used) and atmospheric atten-
uation (the process whereby some of the energy of electromag-
netic radiation is absorbed and/or scattered when traversing
the atmosphere). Atmospheric conditions and sometimes the
radiometer or its condition may change, and reduce the accu-
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racy of the observed change. In the case of post classification,
these factors affect classification accuracy, and error of these
sources is included within classification error.

In the case of multi-temporal datasets, where multiple data
layers are involved (one for each point in time), much of the
change shown in a change-detection analysis may in fact be an
artifact of misregistration (Townshend et al., 1992; Dai and
Khorram, 1998; Stow, 1999) and misclassification (Cherrill and
McClean, 1995). However, the basic units of these two mea-
sures of error are different (distance units for location error and
pixel counts for classification error), and it is not possible to
combine them directly into one overall measure of map quality
(Lanter and Veregin, 1992). The lack of a single index summa-
rizing both error sources poses a serious constraint to correctly
assessing and interpreting the apparent change. In the present
study, we derive an error model that jointly addresses location
and classification error.

This paper includes three sections. The first section de-
scribes our error model for combining location and classifica-
tion errors. Simulations we constructed to study and verify our
model are illustrated in the second section. The third section
explores an application of this model in a study of long-term
vegetation changes in California woodlands, using a multi-
temporal database.

The Error Model

Overview
Error analysis of multi-temporal datasets can be viewed as one
form of error propagation analysis. In the last decade there has
been a growing interest in the issue of error propagation in spa-
tial data analysis. Error propagation models have been derived
from error analysis theory (Taylor, 1982; Heuvelink, 1998),
probability theory (Newcomer and Szajgin, 1984; Veregin,
1989; Veregin, 1994; Veregin, 1995), spatial statistics (Henebry,
1995), and Monte Carlo methods (Stoms ef al., 1992; Mowrer,
1997). However, only a few of these studies have explored the
combined effects of location and classification errors. Arbia et
al. (1998) used the corruption model (Geman and Geman, 1984)
to assess the combined effects of these error sources. They used
simulation and analysis-of-variance techniques to quantify the
relative contributions of location and classification error com-
ponents in simulated maps with known map properties (Arbia
et al., 1998). They found that, for a wide range of map proper-
ties and parameters tested, location error had a large effect on
propagated error. However, possible interaction effects
between error sources were not examined (Arbia et al., 1998).
Each pixel in a multi-temporal database can be character-
ized by its specific set of temporal transitions. Let C, denote the
attribute value of a pixel in time ¢, where t = 1, 2, ..., n time
steps, and Ccan assume any one of 1, 2, ..., k nominal class val-
ues. p(C;) denotes the probability that pixel classification Cin
time period t is correct, i.e., the probability that a pixel
assigned to category C actually belongs to category C. For a
given pixel in a multi-temporal database, the probability that
its assigned set of transitions indeed occurred is given by
plCiC, ... G) = p(C)Np(C)N ... Np(C,). (1)
Assuming independence of error between different time steps,
Equation 1 becomes

plC,C; ... C)) = p(Cy)-p(Cy)-.... p(C). (2)

If registration of all layers was perfect, then each compo-
nent of this index, p(C;), would be the user accuracy (Con-
galton and Green, 1999) associated with the attribute value G,
derived from the appropriate classification accuracy matrix.
However, misregistration of the various layers introduces an

additional uncertainty component that needs to be accounted
for by the error model.

We suggest a probabilistic approach for error analysis of
multi-temporal datasets. It consists of a five-step process:

(1) Construct a location accuracy matrix, expressing the net
impact of misregistration on image accuracy;

(2) Construct a classification accuracy matrix using the standard
method of accuracy assessment;

(3) Combine both matrices to yield a single, overall accuracy
matrix;

(4) Calculate the probability p(Cy for each attribute value C, as
the user accuracy derived from the combined accuracy
matrix; and

(5) Calculate the prabability p(C;, C;, ..., C,) using Equation 2.

Construction of the Location Accuracy Matrix

Several studies addressed the impacts of location error on the-
matic accuracy (Townshend et al., 1992; Dai and Khorram,
1998; Stow, 1999). Townshend et al. (1992) investigated those
impacts using a simulation approach. A MODIS-N image was
artificially mis-registered to itself by a known spatial lag. The
resulting shifted image was compared to the original image
and the “change”—the difference between both images—was
recorded. They found that, even when misregistration is as
small as a quarter of a pixel, its artifacts are likely to be greater
than the actual change.

Here, we suggest a similar approach. An observed raster
map Qupserveq is shifted by x pixels horizontally and y pixels
vertically, where x and yrepresent the horizontal and vertical
components of the RMSE. The resulting map, Qqpp, is compared
to the original Qpesveq 0N @ pixel-by-pixel basis. A location
accuracy matrix is constructed, AM¢ = Q.nife bY Qobserved, Where
each matrix cell i, j stores the number of class j pixels assigned
to class i due to this artificial shift. We assume that the matrix
AlOCjgan estimate of the unknown (i.e., true) location accuracy

matrix Qobserved by Qactua!-

Construction of the Classification Matrix

Classification accuracy matrix is constructed using the stan-
dard accuracy assessment methods (Stehman and Czaplew-
ski, 1998).

Combining the Two Accuracy Matrices

Our approach for combining location and classification error sug-
gests a conditional sequence over which these two errors occur.
We define location error as preceding classification error; thus,
the latter is conditioned on the former (assuming that images are
first rectified and then classified). In order to combine the two
matrices, we traced the fate of pixels when location error and
then classification error are introduced into a map. Table 1 illus-
trates three hypothetical matrices for a single map with three
map categories. AYOC, ACLASS and ABOTH gre the accuracy matri-
ces for misregistration only, classification error only, and both
error sources combined, respectively. Matrix cells contain pixel
counts, where i indicates the row (representing the observed
image) and j indicates the column (representing the actual
image). The count n in cell i,j of A™C represents the number of
class j pixels that were assigned to class i under misregistration.
Similarly, n;; in A®“55 is the count of class j pixels that were
assigned to class i under misclassification. The total number of
actual class j pixels is denoted by n.;.

An interpretation of n;;in ABOTH is more complicated. Con-
sider n, , in APYT™ it represents the number of class 2 pixels
that were assigned to class 1 due to the combined effect of both
errors. This may result from any one of three scenarios:

e A class 2 pixel is assigned to class 1 due to misregistration
(AY9°), thereafter correctly classified to class 1 (AT5*55). The
number of E%xels that would be subject to this process is
therefore ATQC * AFASS / AGLASS
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TaBLE 1. HYPOTHETICAL AccURACY MATRICES OF (A) LocATION ERROR, (B) CLASSIFICATION ERROR, AND (C) COMBINED ERROR

a. AlOC
Actual (j)
1 2 3
Qbserved 1 T(1,1) N1,z Dy1,3)
(i) 2 N4 gz 2) Tz,3)
3 N3 N3 2) Nyg,3)
Column totals n, n,. Mya N.3
b' ACLASS
Actual (j)
1 2 3
therved 1 N1 Ny 2) N3
(i) 2 Iz,1) Nz,2) Dz,3)
3 N3,1) N33 N33
Column totals n,; n,, n,; ¢ 54
c. AEUTH
Actual (j)
1 2 3
0 1 AL (AT ,) AL (AT, AL+ (ATESS/n..)
B + AL (AT ) + ARG (AGASS/ ) + AR (AT, )
s + Al (AgASS/ ) + Alor(adpson ) + ARG (AGEASS/n )
[:] 2 AYC* (ASEA5S/n,,) ALSC*(AS4A5S/n,,) Alfgc*[{igkﬁss‘{ﬂn]
' + AR (AGASS/n, ) + AR (AT + AJCH(AGASS/n )
o o + AL AL n,g) + AlGor (A )
e 3 AE*(AF5A55/m,)) ARG (AFYA5S/n,;) AT (AFHAS/n,,)
d + AJO* (A SS/n,,) + AF9C*(AF5SS/n.,) + AR (ASSASn,,)
0) + AR (ATA/n, ) + AR+ (ASA/n. ) + ALge(AGAss/n )

® A class 2 pixel is assigned correctly to class 2 in spite of
misregistration (A}9Y), thereafter assigned to class 1 due to
classification error (A$%"%5). The respective term for this event
is AJQC * ATLASS | AGLASS,

® A class 2 pixel is assigned to class 3 due to location error
(AL9Y), thereafter assigned to class 1 due to classification error
(A§4459), This event is denoted by A5 * AFASS / AGLASS,

Thus, the value for (AF9™) is denoted by
A—?,(ZJTH ] AE‘.(Z)(: * A%:,I‘iﬁss ,I" A&IL“I‘\BS + AIQ_%C * A%‘.E.‘\SS !’ Ag&.é\ss

+ AI:].?C * AE:,I.’;ASS / AEI:?SS

The expected counts for the remainder of the cells in the com-
bined matrix AB9™ are calculated similarly (Table 1c).

Simulating Uncertainty in a Multi-Temporal Database

A Single Map

A major theme in our error model is that location error and clas-
sification error interact in a predictable way. It follows that a
straightforward validation of this model is possible. Consider
the case where net effects of location and classification error in
an image affected by both can be estimated separately; thus, the
two respective error matrices may be constructed. Values in a
combined error matrix, calculated using the equations in Table
1c, should approximate the values observed in the “actual”
overall error matrix.

This error model is meaningful in the context of a multi-
layer dataset. The goal of simulating error in a single map is to
validate the model. We used the Arc-Info Grid module and Arc
Macro Language (ESRI, 1996) for the simulations. A 512 by 512
thematic raster map was constructed, with one of k classes
assigned randomly to each pixel, according to predetermined
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class proportions. A smoothing function was applied to the
map in order to form a patchy pattern with a varying degree of
clustering (Figures 1a and 1b). A location error map was con-
structed, shifting the original map by x pixels horizontally and
y pixels vertically (Figure 2b). A classification error map was
constructed by altering the pixel values for a given proportion
of the original map (Figure 2¢). Our algorithm allows the classi-
fication error to be patchy, similar to the original map or atany
desired fragmentation level. The error rate for each class was
controlled separately. A combined error map was constructed
by first shifting the original image, and then introducing classi-

Figure 1. Examples of simulated maps. (a) A clumped map
(Moran | = 0.96) with equal class proportions. (b) A frag-
mented map (Moran | = 0.85) with unequal class propor-
tions. The area within the central square is further enlarged
in Figure 2.
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(c) (d)

Figure 2. Small segments of simulated maps. (a) Original
map. (b) The original map was shifted by 2 pixels up and
1 pixel left. (c) The original map was subject to 15 percent
classification error. (d) The original map was shifted as

in (b), then subjected to classification error similar to (c).

fication error (Figure 2d). Location, classification, and com-
bined error matrices were derived from the respective maps.
The observed combined error matrix A°®® was compared to a
predicted error matrix AB9TH, calculated using Table 1c equa-
tions. Differences between these two matrices were calculated as

k
0OBS BOTH
21 |ARS® — ALS

b=

=1

D=2E

N

where N represents the total number of image pixels. We
repeated this process in a set of simulations, testing a range of
possible values for each of the following factors:

e Number of map categories (two to four).

e Proportions of each class in the original map (0.001 to 0.999).

® Degree of autocorrelation in the original map (Moran I values
of 0.25 to 0.96).

® Degree of autocorrelation in classification error (Moran I values
of 0.25 to 0.96).

® Location error rate (shift of 0.5 to 3 pixels).

e (lassification error rate (PcC of 0.5 to 0.99).

Two Time Periods

The goal of this part of the simulation was to illustrate the
potential use of our model in assessing the quality of a multi-
temporal dataset as a whole, and to determine the relative con-
tribution of each error source. A thematic map with three
classes for time period 1 (Map I) was constructed using the
same method as described above. Pixel size was set to represent
10 m, the entire area representing 2600 ha. A second map for
time period 2 (map II) was derived from the first map. Change
was induced in the second map in a patchy manner. Location
and classification error components were introduced to both

maps in the same way as described above. Classification accu-
racy was set to be high (PCC = 0.93 and PCC = 0.95 in Map I and
Map II, respectively). The overall misregistration between both
maps was set to RMSE = 8 m. The combined accuracy matrices
in the resulting maps were calculated using the same method as
for the single map simulation. The observed change in each
class was compared with the “actual” change. The probabilities
associated with each transition type to be correct were calcu-
lated using Equation 2. The relative contribution of each error
source to the accuracy associated with these transitions was
measured.

Anticipating strong relations between map pattern and the
impact of location error on thematic error, we ran this simula-
tion for maps with two fragmentation patterns (see examples in
Figure 1). The clumped and the fragmented patterns had aver-
age patch sizes of 2 ha and 0.2 ha, respectively.

Results

Results of the single map simulations confirmed our model pre-
dictions. The model was found to be robust under a wide range
of the various parameters tested (Table 2). The cumulative dif-
ferences between the matrices A% and ABO™ were less than
0.01 for all combinations of the tested parameters (Table 2). We
therefore conclude that our model predicts correctly the com-
bined effects of location and classification errors, and that dif-
ferences between model predictions and observed results
reflect stochasticity in the simulation process.

Results of simulating the process of change detection for
two time periods demonstrate how the observed change may
be very different from the real change, even when error for each
source is very small. For example, for the fragmented and
clumped images, 23 percent and 15 percent of class 1 in map I
were found to change into other classes in map II, while the
actual proportion for these transitions was 9 percent (Table 3).
The probabilities p(CtC§) for an observed [class 1 — class 2]
transition to be correct were 79 percent and 86 percent in the
case of fragmented and clumped images, respectively (Table 3).

As expected, the degree of map fragmentation largely
affected the degree of the overall error in the dataset. The over-
all pcc for the dataset, defined as the proportion of pixels cor-
rectly classified in both time periods, was 78 percent and 85
percent for the fragmented and clumped images, respectively.

Vegetation Change in Californian Woodlands: A Case Study
We applied our method to a case study in which the dynamics
of oak woodlands have been studied over a period of 56 years.
Four aerial photos of the Hastings Natural History Reservation
and surroundings (Monterey County, California)—taken in
1939, 1956, 1971, and 1995—were scanned. Fourteen ground
control points (GCPs) were identified in all four photos and
measured in the field using a Magellan ProMARK X CM ™ GPS
receiver. The RMSE of the ground control points was less than
0.6 m in all cases. Orthophotos were produced using the GCPs
and a DEM of the area, using the ERDAS Imagine, OrthoBASE
module. Location error for each of the four orthophotos was
assessed using 40 points located across the scene that were
identified in all photos. For a given point in a specific image,
location error was defined as the Euclidean distance between
the point location on that specific image and the average of
locations of that point in all four images. The RMSE was calcu-
lated for each of the orthophotos.

The classification process followed the methods described
by Carmel and Kadmon (1998). Basically, this is a hybrid of
supervised/unsupervised classification, followed by a spatial
filter. The classification scheme included three distinct vegeta-
tion classes: oak woodland, chaparral, and grassland (Griffin,
1977). Ground truthing was used to assess classification accu-
racy for the 1995 image, while a stereoscope-aided manual pho-
tointerpretation was used for the older images.
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TABLE 2. RESULTS OF SOME SIMULATION RUNS FOR A SINGLE Map. PCC 15 THE PROPORTION OF PIXELS THAT WERE CLassIFIED CORReCTLY. D IS THE CUMULATIVE
ABSOLUTE DIFFERENCE BETWEEN PREDICTED AND OBSERVED MATRICES (SEE TEXT)

PCC D
Parameter "ljested (numbers Class Proportions Location o Both Cumulative
refer to the list on p. 10) and error Classification erTor absolute
characteristics 1 2 3 only error only S0UTCES difference

(2) One of the classes dominate 92% 4% 4% 0.96 0.89 0.89 7.67E-04
(2) One of the classes nearly

absent 32% 68% 0.03% 0.86 0.88 0.77 2,04E-03
(5) Large location error 36% 33% 31% 0.61 0.89 0.56 3.91E-03
(6) Large classification error 30% 41% 30% 0.90 0.67 0.62 2.50E-03
(5,6) Large location and classifi-

cation errors 34% 33% 34% 0.61 0.67 047 8.72E-03
(5,6) Moderate values for both

error types 34% 33% 34% 0.90 0.92 0.83 1.50E-03
(3,5,6) Strong autocorrelation

in the map?, small values

for both error types 34% 33% 33% 0.93 0.94 0.87 1.45E-03
(3,5,6) Strong autocorrelation

in the map® moderate val-

ues for both error types 53% 38% 9% 0.87 0.83 0.73 2.02E-03
(3) Weak autocorrelation in

the map? 34% 34% 31% 0.41 0.83 0.39 5.58E-03
(4) Strong autocorrelation in

classification error pattern? 56% 22% 22% 0.87 0.86 0.76 2.82E-03
(4) Weak autocorrelation in

classification error pattern? 34% 34% 31% 0.41 0.83 0.39 2.62E-03
(1) Two map classes 38% 62% 88% 84% 75% 1.71E-03
(1) Four map classes 25% 25%  25% 25% 92% 93% 85% 6.39E-03

*Moran’s I = 0.90.
2Moran’s I = 0.29.
3Moran's I = 0.96.

TABLE 3. RESULTS OF A SIMULATION OF CHANGE DETECTION FOR CLASS 1,
SIMULATING Two PoINTS IN TIME. PiXEL Size Is 10 m. LocaTion ERROR:
RMSE BETWEEN THE Two MapPs 1s 8 M. CLassiFicaTion ErRror: PCC Is 93%
AND 95% FOR THE FORMER AND LATTER IMAGE, RESPECTIVELY

Transition  ‘observed’  ‘actual’  p(C,C)

Fragmented 1to1l 0.77 0.91 0.798
Moran’s [ 0.81-0.85 1to 2 0.10 0.03 0.792
1to3 0.13 0.06 0.793

Clumped l1to1 0.85 0.91 0.853
Moran’s I 0.92-0.96 1to2 0.03 0.001 0.861
1to3 0.12 0.09 0.857

In order to construct location accuracy matrices, a shifted
image was constructed for each image in the database, in
which the shift on the x and y axes corresponded to the xand y
RMSE values, respectively. The shifted images were compared
to their precursors on a pixel-by-pixel basis, thus deriving the
location accuracy matrices. The combined location-classifica-
tion accuracy matrix was calculated for each time period.

Thematic accuracy for a multi-temporal database is usu-
ally described for two time steps, and its extension to n time
steps deserves a brief discussion. Merging the various time-spe-
cific matrices using cross-tabulation was used by Congalton
and Macleod (1994) for describing two time steps with two
classes. This method has the advantage of presenting the entire
accuracy information for the entire dataset. Yet, when more
than two time steps are involved, the combined matrix
becomes large. For example, the Hastings dataset accuracy
assessment resulted in four matrices with three classes. Cross
tabulation of these matrices would result in an 81 by 81 matrix.
The interpretation of such matrices becomes difficult. Alterna-
tively, the time-specific accuracy matrices may serve to con-
struct other, more concise indices. We suggest three such
indices, with an increasing degree of compaction. These are the
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transition-specific probability, the class-specific probability,
and the spatio-temporal PCC.

The tI‘allSitiDIl-S]JeEiﬁE probability, p[C1gggclgsscjgy1 CIQQS)!
is the probability that an observed transition is correct for all
time steps. For example, the transition CGCC represents a pixel
that was classified as chaparral in 1939, changed to grassland in
1956 (probably due to a fire event), changed to chaparral again
in 1971, and remained classified chaparral in 1995. p(cGcc) is
the probability that this exact transition indeed occurred. These
probabilities were calculated as the products of the respective
“user-accuracy” values for the relevant class in each time step.

The class-specific probability is the probability of any tran-
sition involving a specific map class i to be correct. It is calcu-
lated as the average of all the probabilities associated with
transitions involving that specific class in at least one time step.

The spatio-temporal PCC is the probability that the
assigned transition of any given pixel in the scene is correct. It
can be calculated as the product of all PCCs derived from each
time-step accuracy matrix.

Results
The classification accuracy for all images was relatively high;
PCCs for the classification accuracy matrices were in the range
0f 0.90 to 0.94 (Table 4). Location accuracy was also relatively
high (the RMSE was 3.53 m for 1939, 1.97 m for 1956, 2.42 m for
1971, and 2.51 m for 1995). However, location error had a large
effect on the combined thematic accuracy (presumably due to
the small pixel size, 0.6 m, relative to the RMSE, and due to the
heterogeneous nature of the classified images). PCCs for the
location accuracy matrices were 0.62 to 0.80 (Table 4). Asa
result, the combined accuracy PCCs were in the range of 0.58 to
0.74, being (as expected) lower than both their constituents
(Table 4).

Table 5 presents three indices for describing the overall
uncertainty in the dataset. For example, 43 percent of the 1939
grassland remained as such throughout the 65-year period; yet,
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TaBLE 4. ACCURACY MATRICES FOR HASTINGS VEGETATION MaPS

Location Classification Combined
1939 Forest Chaparral Grassland Forest Chaparral Grassland Forest Chaparral Grassland
Forest 4936095 111930 1393164 145 9 1 4284276 377535 1264901
Chap. 107710 2079572 236669 1 54 3 144655 1681490 344057
Grass. 1394644 232788 71056778 22 4 143 2009518 365265 7108991
PCC 0.80 0.90 0.74
Location Classification Combined
1956 Forest Chaparral Grassland Forest Chaparral Grassland Forest Chaparral Grassland
Forest 3785833 186933 2490121 126 2 4 3151134 214952 2186853
Chap. 197516 1160408 355944 4 38 3 316761 1014681 469368
Grass. 2440167 386870 4917592 25 4 144 2955621 504578 5123615
PCC 0.62 0.88 0.58
Location Classification Combined
1971 Forest Chaparral Grassland Forest Chaparral Grassland Forest Chaparral Grassland
Forest 5871814 153926 1585210 181 1 4 5426619 186040 1633273
Chap. 164847 1517133 268552 8 41 0 394425 1452788 320110
Grass. 1557050 283845 5026291 9 1 109 1772667 316076 4926670
PCC 0.76 0.94 0.72
Location Classification Combined
1995 Forest Chaparral Grassland Forest Chaparral Grassland Forest Chaparral Grassland
Forest 7260180 173030 1492576 169 3 2 6567349 269277 1475277
Chap. 177796 1328014 328503 5 29 1 345691 1048506 341749
Grass. 1457213 333164 4903500 14 5 107 1982149 516424 4925310
PCC 0.77 0.91 0.72

TaBLE 5. INDICES FOR THE ACCURACY OF THE HASTINGS MULTI-TEMPORAL DATASET

(a) Transition Specific Accuracy, the Probability of a Specific Set of Transitions to Be Correct. Three Examples of Possible Transition
Sets Are Presented.

Probability of being correct, accounting for:
Proportion of 1939 | g o

class undergoing Location Classification Combined
Transition type Nature of transition this transition error error error
GGGG Grassland does not change during
the entire period 0.43 0.28 0.69 0.21
CGGG Chaparral is burnt in the 1955 fire,
thereafter is not recovering. 0.06 0.29 0.60 0.22
GTTT or GGTT Grassland turns into forest at some
or GGGT point during the 65 year period 0.37 0.31 0.69 0.25

(b) Class Specific Accuracy, the Probability for a Transition Involving a Particular Class to Be Correct, Averaged for all Relevant Transitions.

Probability of being correct, accounting for

Proportion of study Location Classifica-
Transition type area involved error tion error Combined
All 69 transition combinations
involving forest 0.66 0.26 0.59 0.20

(c) Spatio-Temporal PCC, the Probability for any Given Pixel, that Its Assigned Set of Transitions Is Correct, Averaged for all Pixels in
the Scene.

Probability of being correct, accounting for

Proportion of study Location Classifica-
Transition type area involved error tion error Combined
Averaged across the entire
study area 1 0.29 0.67 0.22

for any single pixel, the probability that this transition
sequence is correct is only 0.21 (Table 5a). Similarly, the com-
bined probability of a transition sequence involving forest to
be correct is 0.2 (Table 5b). The spatio-temporal PCC, which is

the probability of any given pixel in this dataset being assigned
to the correct class in all four time periods, is 0.22 (Table 5¢).
Note that, in all cases, the contribution of location error to the
overall uncertainty is much larger than the contribution of clas-
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sification error. This indicates that, for the Hastings dataset,
reducing the impact of location error is a prerequisite before
any meaningful analysis can take place. One way to increase
spatial accuracy is by reducing resolution (Carmel et al., 2001).
Quantification of the gain in accuracy for a given decrease in
resolution is the subject of an ongoing study in our lab.

Discussion

Location error between various layers in a GIS dataset may seri-
ously affect the quality of any spatial analysis performed using
these layers (Chrisman, 1989). This is particularly true in the
case of change detection, where a time-series dataset is ana-
lyzed, as demonstrated here for the change in the Mediterra-
nean woodlands of California. Existing methods of reporting
thematic accuracy in multi-temporal datasets do not account
for these location accuracy effects.

We suggest an approach that quantifies location accuracy
in terms of thematic accuracy, using a simulation of the loca-
tion error process. We further develop an error model that com-
bines the location and classification accuracy matrices into a
single matrix that represents the overall thematic accuracy for a
single layer. In combining location and classification accuracy
matrices, we make the assumption that, in the process of error
propagation, location error precedes classification error. The
interactions between both error sources are explicitly quanti-
fied in our model.

The resulting time-specific matrices can then serve to
derive useful indices for estimating the overall uncertainty in
a multi-temporal dataset. We suggest three such indices: the
transition-specific probability, the class-specific probability,
and the spatio-temporal PCC. Indices that account for the
chance agreement between maps (e.g., kappa (Congalton,
1991)) may be derived from the time-specific combined matri-
ces. Pontius (2000) suggests a specific derivation of kappa for
maps with known location error. The extension of such indices
for multi-temporal datasets is yet to be explored.

The simulations performed revealed that our error model
estimates were found to be highly accurate under a wide range
of parameters tested. These parameters include number and
proportions of map classes, original map pattern, classification
error pattern, and classification and location error rates.

Classification errors were found to be spatially correlated
in previous studies (Congalton, 1988; Steele et al., 1998). The
effects of possible autocorrelation in classification error on the
combined location-classification error were studied in the
simulations. Our results show that autocorrelation in classifi-
cation error did not affect the accuracy of model predictions for
the combined error.

Yet, the robustness of our model to other aspects of error
pattern was not tested, and further study may be needed. In
particular, the effects of location error pattern, correlation
between location and classification error patterns, and correla-
tion between errors in different time steps should be
investigated.

The location error induced in our simulations was a homo-
geneous shift. The error model assumes that the location accu-
racy matrix, A'°¢, is an estimate of the unknown location
accuracy matrix Qupserved DY Quetuar- However, location error in
real maps is known to have complex spatial patterns (Brown,
1999). Further study is needed to assess if location error pat-
tern affects the combined location-classification error.

In the process of combining both error sources, we let clas-
sification error be dependent on location error. Yet, the original
probabilities for these two sources are assumed independent. It
is difficult to assess the degree to which this assumption holds.
In many applications, the data used for the classification and its
accuracy assessment are collected independent of the data
used in the orthorectification process. However, factors such an

extremely steep terrain may affect both classification accuracy
and location accuracy.

A third untested assumption of our model is independence
of error between different time steps. Some correlation
between error in different time steps should be expected for
estimates of location accuracy (e.g., when the same DEM is used
for rectification of all images, as in the case study presented
here) and of classification accuracy (e.g., where classification
errors may often be correlated with topography). The extent to
which noncompliance with these assumptions biases model
predictions is yet to be determined.

Acknowledgments

This study was funded by the USDA Forest Service, Inventory
and Monitoring Institute, as part of the cooperative research
program with the Keren Kayemet Leisrael (JNF). Thanks are due
to Lucia Orlando of The Science Library of UC Santa Cruz and
to Peter Ashley of HIW & Assoc. for their help with the air pho-
tos, and to Mark Stromberg of Hastings Nature Reserve.

References

Arbia, G., D. Griffith, and R. Haining, 1998. Error propagation model-
ling in raster GIS: Overlay operations, International Journal of
Geographical Information Systems, 12:145-167,

Brown, D.G., 1999. Digital photogrammetric change analysis as applied
to active coastal dunes in Michigan, Photogrammetric Engi-
neering & Remote Sensing, 65:467—-474.

Carlson, T.N., and G.A. Sanchez-Azofeifa, 1999. Satellite remote sens-
ing of land use changes in and around San Jose, Costa Rica, Remote
Sensing of Environment, 70:247—-256.

Carmel, Y., and R. Kadmon, 1998. Computerized classification of Medi-
terranean vegetation using panchromatic aerial photographs,
Journal of Vegetation Science, 9:445—454,

, 1999. Grazing, topography, and long-term vegetation changes
in a Mediterranean ecosystem, Plant Ecology, 145:239-250.

Carmel, Y., R. Kadmon, and R. Nirel, 2001. Spatio-temporal predictive
models of Mediterranean vegetation dynamics, Ecological Applica-
tions, 11:268-280.

Cherrill, A., and C. McClean, 1995. An investigation of uncertainty in
field habitat mapping and the implications for detecting land
cover change, Landscape Ecology, 10:5-21.

Chrisman, N.R., 1989. Modeling error in overlaid categorical maps,
Accuracy of Spatial Databases, (M.F. Goodchild and S. Gopal,
editors), Taylor & Francis, London, pp. 21-34.

Congalton, R.G., 1988. Using spatial autocorrelation analysis to explore
the errors in maps generated from remotely sensed data, Photo-
grammetric Engineering & Remote Sensing, 37:35—46.

, 1991. A review of assessing the accuracy of classifications of
remotely sensed data, Remote Sensing of Environment, 37:35—46.

Congalton, R.G., and K. Green, 1999. Assessing the Accuracy of
Remotely Sensed Data: Principles and Practices, Lewis Publish-
ers, New York, N.Y., 160 p.

Congalton, R.G., and R. Macleod, 1994. Change detection accuracy
assessment on the NOAA Chesapeake Bay pilot study, Proceed-
ings of the International Symposium on Spatial Accuracy of Natu-
ral Resource Data Bases: Unlocking the Puzzle, (R.G. Congalton,
editor), May, Williamsburg, Virginia, American Society for Photo-
grammetry and Remote Sensing, Bethesda, Maryland, pp. 78—87.

Coulter, L., D. Stow, B. Kiracofe, C. Langevin, D.M. Chen, S. Daeschner,
D. Service, and J. Kaiser, 1999. Deriving current land-use informa-
tion for metropolitan transportation planning through integration
of remotely sensed data and GIS, Photogrammetric Engineering &
Remote Sensing, 65:1293-1300.

Dai, X.L., and S. Khorram, 1998. The effects of image misregistration
on the accuracy of remotely sensed change detection, IEEE Trans-
actions on Geoscience and Remote Sensing, 36:1566—1577.

ESRI, 1996. Arc/Info 7.0.4 Users Guide, Environmental Systems
Research Institute, Redlands, California.

Tulv 2001 271



Foody, G.M., and D.S. Boyd, 1999. Detection of partial land cover
change associated with the migration of inner-class transitional
zones, International Journal of Remote Sensing, 20:2723-2740.

Geman, 5., and D. Geman, 1984. Stochastic relaxation, Gibbs distribu-
tion and the Bayesian restoration of images, IEEE Transaction in
Pattern Analysis and Machine Intelligence, 6:721—742.

Griffin, J.R., 1977. Oak woodland, Terrestrial Vegetation of California,
(M.G. Barbour and J. Major, editors), John Wiley & Sons, New York,
N.Y., pp. 383-415.

Henebry, G.M., 1995. Spatial model error analysis using autocorrela-
tion indices, Ecological Modelling, 82:75-91.

Heuvelink, G.B.M., 1998. Error Propagation in Environmental Model-
ling with GIS, Taylor and Francis, London, 144 p.

Jensen, J.R., 2000. Remote Sensing of the Environment: An Earth
Resource Perspective, Prentice Hall, Upper Saddle River, New
Jersey, 544 p.

Lanter, D.P., and H. Veregin, 1992. A research paradigm for propagating
error in layer-based GIS, Photogrammetric Engineering & Remote
Sensing, 58:825—833.

Morisette, ].T., S. Khorram, and T. Mace, 1999. Land-cover change
detection enhanced with generalized linear models, International
Journal of Remote Sensing, 20:2703-2721.,

Mowrer, T.H., 1997, Propagating uncertainty through spatial estimation
processes for old-growth subaplpine forests using sequential
Gaussian simulation in GIS, Ecological Modelling, 98:73—-86.

Newcomer, J.A., and J. Szajgin, 1984. Accumulation of thematic map
errors in digital overlay analysis, The American Cartographer,
11:58-62.

Pontius, R.G., 2000. Quantification error versus location error in com-
parison of categorical maps, Photogrammetric Engineering &
Remote Sensing, 66(8):1011-1016.

Radeloff, V.C., D.]. Mladenoff, and M.S. Boyce, 2000. Effects of inter-
acting disturbances on landscape patterns: Budworm defoliation
and salvage logging, Ecological Applications, 10:233-247,

Rees, W.G., and M. Williams, 1997. Monitoring changes in land cover
induced by atmospheric pollution in the Kola Peninsula, Russia,

using Landsat-MSS data, Infernational Journal of Remote Sens-
ing, 18:1703-1723.

Singh, A., 1989. Digital change detection techniques using remotely-
sensed data, International Journal of Remote Sensing,
10:989-1003.

Steele, B.M., J.C. Winne, and R.L. Redmond, 1998. Estimation and
mapping of misclassification probabilities for thematic land cover
maps, Remote Sensing of Environment, 66:192—-202.

Stehman, S.V., and R.L. Czaplewski, 1998. Design and analysis for
thematic map accuracy assessment: Fundamental principles,
Remote Sensing of Environment, 64:331-344,

Stoms, D.M., FW. Davis, and C.B. Cogan, 1992. Sensitivity of wildlife
habitat models to uncertainties in GIS data, Photogrammetric
Engineering & Remote Sensing, 58:843-850.

Stow, D.A., 1999. Reducing the effects of misregistration on pixel-level
change detection, International Journal of Remote Sensing,
20:2477-2483.

Taylor, J.R., 1982. An Introduction to Error Analysis, University Science
Books, Mill Valley, California, 270 p.

Townsend, P.A., and S.]. Walsh, 1998. Modeling floodplain inundation
using an integrated GIS with radar and optical remote sensing,
Geomorphology, 21:295-312.

Townshend, J.R.G., C.O. Justice, C. Gurney, and J. McManus, 1992,
The impact of misregistration on change detection, IEEE Transac-
tion on Geosience and Remote Sensing, 30(5):1054—1060.

Turner, M.G., and R.H. Gardner (editors), 1992. Quantitative Methods
in Landscape Ecology, Springer-Verlag, New York, N.Y., 520 p.

Veregin, H., 1989. Error modeling for map overlay, Accuracy of Spatial
Databases, (M.F. Goodchild and S. Gopal, editors), Taylor and
Francis, London, pp. 3-18.

» 1994. Integration of simulation modeling and error propagation

for the buffer operation in GIS, Photogrammetric Engineering &

Remote Sensing, 60:427-435.

. 1995. Developing and testing of an error propagation model

for GIS overlay operations, International Journal of Geographical

Information Systems, 9:595-619.

(Received 26 June 2000; accepted 27 October 2000; revised 05 Decem-
ber 2000)




