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Characterizing Location and Classification Error
Patterns in Time-Series Thematic Maps

Yohay Carmel

Abstract—The goals of this letter are to study the spatial patterns
of location error and of classification error in spatio—temporal
datasets, assess the role of environmental factors in determining
error rate and pattern, and test for possible correlation within and
between these error types in space and time. A multiple regression
was used to determine the effects of local environmental factors
(topography, vegetation cover) on each error type. Topographic
structure and vegetation cover had significant effects on location
error, where larger error was associated with north-facing aspects,
steeper slopes and woody vegetation cover. Classification error
was also affected by topography, and vegetation cover. Slope
was the major factor that affected classification quality. Strong
correlation was found between error in different time steps, for
both error types. Correlation between these two error types in the
same time step was much smaller and in most cases insignificant.

Index Terms—Change detection, classification error, error anal-
ysis, error estimation, misregistration, spatio-temporal database.

I. INTRODUCTION

S THE ANTHROPOGENIC processes of land transfor-

mation across the earth are accelerating, change detection
becomes a critical means for accurate description of such pro-
cesses in regional and local scales. A number of authors have
raised the problem of accuracy in multitemporal datasets, where
the main concerns are the impact of error in the coregistration of
time-series maps or images on the estimates of change [1]—[3]
and the impact of attribute error in each layer in the dataset
on the accuracy of the dataset as a whole [4]. These concerns
correspond to the two major types of error in spatio—temporal
datasets, location error, and classification error, respectively.

Error in spatial datasets may be nonrandomly distributed in
space. It may have complex spatial patterns, independent of pat-
terns in the image it is derived from. Errors of different sources
may interact and, thus, increase uncertainty further [5]. In fact,
for a single time-step, nonrandom spatial patterns in georefer-
enced satellite images were found for location error [6] as well
as for classification error [7].

An accurate assessment of uncertainty in spatio—temporal
datasets depends on good error models; such models, in turn,
need to account not only for the spatial patterns of each error
source alone, but also for possible correlation between both
error sources in space and time. The existence of such complex
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error patterns was suggested recently [1], [2], [6], but was not
tested for in actual datasets.

Another important task of studies of uncertainty in spatial data
is the identification and quantification of the factors affecting
error [5]. Previous studies have stressed the role of internal
factors (quality of ground control points (GCPs) for location
error, the classification method used for classification error). In
this letter, statistical methods are used in order to quantify effects
of external, environmental factors (topography, vegetation) on
data accuracy.

The goals of this letter are 1) to test for possible correlation
within and between these error types in space and time, and 2)
to assess the role of environmental factors in determining error
rate and pattern.

II. METHODS
A. Spatio—Temporal Dataset

A case study in which the dynamics of oak woodlands are
studied over a period of 56 years [8] was used for the study of
error patterns. Five aerial photos of the Hastings Natural History
Reservation and surroundings (Monterey County, CA), taken in
1939, 1956, 1966, 1971, and 1995, were scanned. All photos
were panchromatic with high spatial resolution, 1 :20,000, ex-
cept the 1995 photo which was color 1:18 000. 14 ground con-
trol points were identified in all photos and measured in the field
using a Magellan ProMARK-X-CM GPS receiver. Differential
solutions for the GCPs were determined using base station data
from The SIVA Center at Monterey Bay. Horizontal standard
deviation for the 14 GCPs ranged from 0.32—1.92 m, with a me-
dian of 0.59 m. Orthophotos were produced using the ground
control points, a high-resolution DEM (digital elevation model)
of the area, and camera calibration reports. The spatial resolu-
tion (pixel size) of all orthophotos was 0.6 m.

The classification process followed the methods described
by Carmel and Kadmon [9]. Basically, this is a hybrid of super-
vised/unsupervised classification, followed by a spatial filter.
The classification scheme included three distinct vegetation
classes: oak woodland, chaparral, and grassland.

B. Error Assessment

One goal of this letter is to test error patterns of different
error sources and different time steps for possible correlation.
Toward this end, a special effort was made to document both
error sources across the study area using the same point loca-
tions in all time steps.

Location error was estimated for each photo in 40 locations
across the scene that were identified in all photomaps. For a
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TABLE 1
LIST OF POTENTIAL PREDICTORS FOR THE MIXED MODEL

Variable Measurement

Year Nominal variable, indicating the year the
image was taken (1939, 1956, 1971 or
1995)

Trees Proportion cover of trees withina 5 m
radius around each point

Grass Proportion cover of herbaceous
vegetation within a 5 m radius around
each point

Elevation Elevation in m above sea level

Slope Slope inclination

aspect-ns A binary variable indicating north
aspects vs. south aspects

aspect-ew A binary variable indicating east

aspects vs. west aspects

The interaction term between slope and
the north-south component of aspect
The interaction term between slope and
the east-west component of aspect

aspect-ns*slope

aspect-ew*slope

given point in a specific image, location error was defined as
the Euclidean distance between point location on that specific
image and location of the same point in a reference image. The
1966 orthophoto was set as a reference, to which all other im-
ages were compared, and was not used in further analysis. Error
values in these 40 points were used to calculate correlation be-
tween time steps.

Classification error was previously assessed using a stereo-
scope-aided manual photo-interpretation of at least 350 points
for each image. High classification accuracy was found in that
assessment for all images (percentage classified correctly [PCC]
ranged from 0.88 to 0.94; see [8, Table IV]). In the present letter,
the reliability of the manual interpretation as a reference was as-
sessed, comparing the 1995 manual interpretation with results of
a ground survey that covered 89 locations. An agreement of 0.96
was found between the two methods, and the manual interpreta-
tion was, thus, considered reliable for all images. Next, the set of
40 point-locations, identified in all images that was used to as-
sess location accuracy was used here to assess classification ac-
curacy as well. For a point location, classification can be either
“true” if it is in agreement with the reference) or “false” (oth-
erwise). This binary value is not sufficient for estimating error
pattern, neither for assessing possible correlation with location
error, a continuous variable. The goal was thus to construct a
local estimate of the error matrix and the PCC. Toward this end,
the local classification accuracy was estimated for a circle of
5-m radius around each of the 40 point locations. The area of
the image contained within each circle (~220 pixels) was clas-
sified manually for each image. The manual classification was
compared with the computerized classification described above,
to construct an error matrix and derive the PCC value for each
circle. These data were used to calculate correlation in classifi-
cation error between time steps, as well as correlation between
classification and location error in the same time step.

C. Statistical Analysis

The goal of the statistical analyses was to determine the
effects of local factors and of large-scale trends in the image

TABLE 1I
CORRELATION (SPEARMAN COEFFICIENT) IN ERROR BETWEEN DIFFERENT
POINTS IN TIME AND BETWEEN ERROR SOURCES

(a) Correlation in location error between time steps.

1939 1956 1971
1939 - - -
1956 043 - -
1971 0.49** 0.71** -
1995 0.19" 0.71** 0.67**
(b) Correlation in classification error between time steps.
1939 1956 1971
1939 - - -
1956 0.42* - -
1971 0.28"° 0.43* -
1995 0.14M 0.38* 0.45*

(c) Correlation between location error and classification error in the

same year.
1939 1956 1971 1995
0.03"¢ 0.17™% 0.05" 0.01M
N=40. *p<0.05, **p<0.01

on location error and on classification error. The dependent
variables were point-specific location error and circle-specific
classification error in the 40 point-locations described above, in
each of the four years (1939, 1956, 1971, 1995). These obser-
vations were not independent. Thus, a mixed regression model
was used, with the explanatory variables time (as a nominal
variable) and environmental factors (indexes of topography and
vegetation, all as interval-scaled variables). Mixed regression
is a flexible tool, suitable for cases where various structures of
correlation occur within the dependent variables. The model
assumed unspecified correlation structure between time points
and independence between locations after allowing for scale
and time. Three major groups of predictors were included
(Table I): 1) year; 2) topographic variables (elevation, slope,
aspect and the interaction term between slope and aspect);
and 3) vegetation cover (circle-specific percentage cover of
trees, chaparral and grass (the sum of these three variables is
a unity in all observations; thus, chaparral cover was omitted).
Insignificant variables (P > 0.1) were omitted in a backward
process, and the procedure was rerun. The P > 0.1 threshold
level was selected because of the small sample size (n = 40).

III. RESULTS

RMSE location error in all four years was 2.6 + 0.66 m, and
average PCC was 0.88 £ 0.05 m. Correlation between loca-
tion error in different time steps was moderate [Spearman co-
efficient ranged from 0.43 to 0.71, significant in all cases but
one; see Table II(a)]. Correlation between classification error in
different time steps was less prominent [Spearman coefficient
ranged from 0.14 to 0.45, insignificant in two cases, Table I1(b)].
Correlation between error types in the same time step was in-
significant in all four time points [Table II(c)].

The mixed regression model revealed significant effects of
environmental factors (both topography indexes and vegetation
cover) on location error (Table III). Slope related positively to
location error (steeper slopes had larger location error). Higher
elevations had smaller error, and north-facing slopes had larger
location error than south-facing slopes (Table III). The inter-
action term between slope and the north-south component of



CARMEL: CHARACTERIZING LOCATION AND CLASSIFICATION ERROR PATTERNS 13

TABLE III
RESULTS OF THE MIXED MODEL FOR LOCATION ERROR
Effect Subtype Estimate
Intercept 37.312***
year 1939 2.152N8
year 1956 -2.643*
year 1971 -0.478N
year 1995 0
slope 0.646"
aspect-ns North -4.932*
aspect-ns South 0
aspect-ns*slope North 0.881*
aspect-ns*slope South 0
grass -6.112*
trees -15.825***

N=160. *p<0.1, **p<0.05,***p<0.01," NOT SIGNIFICANT

aspect was also significant (the effect of slope on error was
more prominent on south-facing slopes than on north-facing
slopes). High cover of both trees and grasses was associated
with smaller location error, meaning that chaparral is associated
with increased location error. Expectedly, year was a highly sig-
nificant predictor of location error as well.

The regression model for classification error ended up
with only two significant predictors: year and cover of trees
(increased cover of trees was associated with increased classi-
fication error); topographic indexes did not affect classification
accuracy significantly (Table IV).

IV. DISCUSSION

Recently, several studies addressed the issue of error in
spatio—temporal data [1], [3], [10]. Yet, an error analysis for
the case of time-series thematic maps has not been carried out
before. The present letter analyzes the structure of the two
major types of error in a spatio—temporal thematic dataset and
detects correlations between them in space and time. Then,
a mixed regression model is used to identify effects of local
environmental factors on location error and on classification
error. Taken together, results of this study reveal nonrandom
error patterns, including local variability (as revealed by the
mixed regression model), and correlation between time steps.

A moderate and significant correlation was found between
error of the same type in different times, while correlation be-
tween the two error types in the same time step was weak and
insignificant. The observed strong correlation between location
error in different images in a time-series is not surprising, since
all images were georectified based on the same set of ground-
surveyed locations. The quality and geometric relationships of
the ground control points is thought to be a major determinant of
the spatial pattern in location error [6] (although my results sug-
gest that topography also affects location error considerably).
Some correlation is also expected for classification error in dif-
ferent time steps, since vegetation types and specific regions that
are misclassified in one image have high probability of being
misclassified in another image. The correlation values calcu-
lated for classification error in different time steps were lower
than for location error and still fair.

The case for correlation between location error and classifi-
cation error is less clear. Both location accuracy and classifica-

TABLE IV
MIXED MODEL RESULTS FOR CLASSIFICATION ERROR

Effect Subtype Estimate

Intercept 0.8112***
year 1939 0.06372**
year 1956 0.09011***
year 1971 -0.01636"°
year 1995 0
trees 0.1067*
N=160. *p<0.1, **Pp<0.05,***p<0.01, " NOT SIGNIFICANT

tion accuracy are affected by land cover. To the extent that these
factors affect both classification and georectification similarly,
some correlation between location error and classification error,
although weak and indirect, could be expected. Such relations
were not detected in this study, where correlation between the
two error types was small and insignificant. This finding is par-
ticularly important for error models that attempt to incorporate
both error types into a single estimate [8], [11].

This study found that topography indexes as well as vegeta-
tion cover have a significant contribution to the magnitude of
location error. Low elevations, steep slopes, and north-facing
aspects were all associated with increased location error. All
these may be attributable to a combination of larger stretch in
the georectification process and poorer illumination [9].

The major findings of this letter, including correlation be-
tween time steps, lack of correlation between error sources,
and the environmental factors that affect error are probably true
for most studies of time-series raster images derived from air-
photos. The extent to which these conclusions are relevant to
satellite images is less clear. However, at least the correlation
between errors in different time steps, pointed out in this letter,
is likely to be present in any remotely sensed spatio—temporal
data.

V. CONCLUSION

Inferences can be drawn from this letter, regarding both com-
ponents of error management, namely error reduction and error
assessment. Much effort has been directed into improving ac-
curacy of spatial data and the present letter can add few hints.
When ground control points are collected, it would be benefi-
cial if more points are allocated preferentially to areas where
accuracy is expected to drop, and more effort should be put
into the measurement and identification of these points. This
letter shows that such areas include steeper slopes, particularly
north-facing slopes (perhaps due to more shade in the northern
hemisphere), and forested land.

Perhaps more important, conclusions of this letter are rel-
evant to modeling uncertainty in time-series thematic maps.
Uncertainty in spatial data is inevitable [5]. However, informa-
tion on the uncertainty in estimated parameters may be used for
evaluating the risk that a specific outcome of further analysis
of the information will be incorrect [12], or for incorporating
the variability of the parameters of interest into ecological and
environmental models, using stochastic simulations [13]. Error
modeling has become a major means to provide such spatially
explicit information on data uncertainty. Most spatially explicit
error models were developed for a single data layer (typically
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for DEM and its derivatives, e.g., [12], but there exist also
models of multilayer databases and time-series [3], [10]. To
date, two different models were developed for the special case
of multilayer thematic raster maps [8], [11], in which both
location error and classification error have to be accounted
for in each layer. Both of these models assume that error in
each time step is independent of error in other time steps and
that location error and classification error are independent of
each other. The present letter reveals that while the former
assumption may hold in actual datasets, the latter assumption
may not. A version of the combined location—classification
error model [8] that accounts for correlation between time
steps is the subject of an on-going research in our laboratory.
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