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a b s t r a c t

Planning land-use for biodiversity conservation frequently involves computer-assisted

reserve selection algorithms. Typically such algorithms operate on matrices of species

presence–absence in sites, or on species-specific distributions of model predicted probabili-

ties of occurrence in grid cells. There are practically always errors in input data—erroneous

species presence–absence data, structural and parametric uncertainty in predictive habitat

models, and lack of correspondence between temporal presence and long-run persistence.

Despite these uncertainties, typical reserve selection methods proceed as if there is no

uncertainty in the data or models. Having two conservation options of apparently equal

biological value, one would prefer the option whose value is relatively insensitive to errors

in planning inputs. In this work we show how uncertainty analysis for reserve planning can

be implemented within a framework of information-gap decision theory, generating reserve

designs that are robust to uncertainty. Consideration of uncertainty involves modifications

to the typical objective functions used in reserve selection. Search for robust-optimal reserve

structures can still be implemented via typical reserve selection optimization techniques,

including stepwise heuristics, integer-programming and stochastic global search.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, much scientific effort attempting to cope
with biodiversity loss has been directed into reserve selection
studies (see Pressey, 1999; Margules and Pressey, 2000; Cabeza
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and Moilanen, 2001; Moore et al., 2003; Noss, 2003; Cabeza et
al., 2004; Williams et al., 2004 for reviews). A common fea-
ture of these studies is the search for the set of candidate
sites that optimizes a performance function (e.g., number of
species adequately covered by reserves) while observing con-
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straints (typically total area or cost of protected land). Many
variants of site selection algorithms have been produced to
solve such optimization problems (Csuti et al., 1997; Pressey et
al., 1997; Cowling et al., 2003; Moilanen, 2005a,b; Moilanen et
al., 2005). However, a common feature of all of these methods
is that optimizations are performed and evaluated as if there is
no uncertainty in the species distributions that underlie them
(Gaston and Rodrigues, 2003; Rodrigues et al., 2004; Wilson et
al., 2005).

For example, consider the much-studied single-
representation problem, which seeks “the least expensive set
of sites that includes at least one occurrence of each species”
(Csuti et al., 1997; Pressey et al., 1997). This formulation
implicitly assumes that (i) observations or predictions of
species presence are correct, (ii) species distributions do not
change and (iii) present occurrence indicates long-term per-
sistence in sites. If there are errors in observation, prediction
or characterization of spatial population dynamics, then these
assumptions are no longer valid. As a consequence, using
the single-representation formulation for reserve planning
may maximize within-reserve extinction rates, especially
if selection units are small (Cabeza and Moilanen, 2003).
Thus, optimizing performance (minimizing reserve cost in
the single-representation problem) leads to solutions that
have no robustness to uncertainty in the species distribution
information.

Uncertainty analysis provides a consistent framework for
understanding potential consequences of errors in inputs.
Here we apply one particular branch of decision theory,
information-gap theory (Ben-Haim, 2006) to conservation
planning. Insights gained from this theory indicate that under
severe uncertainty, the solution that maximizes a perfor-
mance function is in general unlikely to be a tenable solution.
In particular, a basic theorem of info-gap theory asserts that
utility (or performance) optimization is equivalent to mini-
mization of immunity to uncertainty. When maximizing per-
formance one employs best-estimates, the so-called nominal
models (which may be probabilistic) and ignores the potential
structural or factual errors. The optimal solution will be prone
to failure due to errors in the underlying distribution mod-
els because the optimization process is completely reliant on
these models. This is the case with the single-representation
problem.

A reserve solution that is optimal with respect to the
nominal estimate is often not robust to uncertainty, whereas
another solution may be sub-optimal when evaluated using
the nominal distributions but more robust to uncertainty in
these distributions. In fact, a robust solution that is appar-
ently sub-optimal may be preferable to an optimal solution
that has no robustness to potential error. We call such solu-
tions robust-optimal. Robustness is a property of the solution
that expresses immunity to uncertainty in the underlying
database and fitted models. More concretely, we may not be
sure that an entire list of species that are to be protected
in a specific set of conservation areas will actually persist
within the areas to be conserved. However, we want to be rea-
sonably certain that at least, say, 90% of those species will
actually persist within the region. Furthermore, we would like
to be confident that this outcome will be achieved even if
the models upon which our decision is based are substan-

tially flawed. This approach to reserve planning is entirely
different from the common approach, which chooses the opti-
mal set of conservation areas based on best-estimated mod-
els, while risking the possibility of large failure due to model
error.

Decision analytic methods, including uncertainty analy-
sis, are often employed in population viability analyses (see
e.g., Possingham et al., 2001a,b; Drechsler and Burgman, 2004;
Regan et al., 2005). However, PVAs typically concern detailed
population dynamical analyses for a couple of conservation
scenarios and one or a few species. In contrast, reserve selec-
tion may involve large optimization problems with large-
scale spatial planning and many species. It is not surprising
that reserve design has so far largely ignored uncertainty,
because in most cases uncertainty is not even acknowledged
let alone quantified in the habitat models that are used for
predicting underlying species distributions. Methods do exist
for producing uncertainty estimates (e.g., Elith et al., 2002;
MacKenzie et al., 2003; Van Niel et al., 2004; Wilson et al.,
2005), but they are rarely implemented. We believe that part
of the problem is that even if methods are available, there are
few tools for incorporting uncertainty into decision-making
(Burgman et al., 2006).

Fig. 1 shows a categorization of the kinds of sites that may
be available for conservation. Areas that are certain to have
high biological value are most important for conservation.
Areas that are certain to have low biological value should be
avoided. The robustness analysis applies to areas that have
high estimated value, but this value is uncertain. These areas
have potential for negative surprises for conservation, and this
potential for negative surprises should be controlled via uncer-
tainty analysis. The fourth category includes areas that have
low value, but we are unsure of this. These could be areas that,
for example, have been poorly surveyed. These areas have
potential for positive surprises, which can be handled via the
concept of opportuneness in the context of the information-gap
theory (Ben-Haim, 2006).

The goal of this article is to provide terminology and a
methodological basis for robust reserve planning. We describe
in detail a simple application of information-gap theory to
reserve planning based on probabilities of occurrence. We also
describe plausible uncertainty models for some more complex
conservation planning applications.

Fig. 1 – A categorization of four kinds or sites with different
implications for conservation decision making.
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Table 1 – Symbols and notation

Symbol Explanation

s Index for species
c Index for cell (i.e., selection unit, site)
m Index for model
C Set of indexes for cells, which together define a

reserve selection
pscm True probability of occurrence for species s in

cell c according to model m
p̃scm Nominal distribution: our best estimate for pscm

wscm Uncertainty weight corresponding to p̃scm. It
could be, for example, the standard error or
length of the confidence interval for p̃scm

p̃ The vector of p̃scm values
˛ Horizon of uncertainty
U(˛, p̃) Uncertainty model centered around p̃ with

horizon of uncertainty ˛

Ts Target level of representation for species s
Rsm(C, p) Representation level of species s in reserve C

according to model m and probability vector p
ˆ̨ = ˆ̨ (C, T) Overall robustness of reserve design C over all

models and species with targets T
ˆ̌ = (C, T) Opportuneness value of reserve design C over all

models and species with targets T
C* Robust-optimal solution

2. Methods

2.1. Overview

Below we define three formulations (performance functions)
for the reserve selection problem. We then describe the
information-gap decision theoretic approach to uncertainty
analysis and its application to reserve planning. The con-
cepts of uncertainty model, robustness, opportuneness, and
a robust-optimal solution are central to this work. Symbols
and notation are summarized in Table 1.

2.2. Notation and objective

Indices s, c and m identify species, cells in the spatial domain
(often referred to as sites, patches or areas), and models. Sets
of cells, which constitute potential reserves (or reserve net-
works), are identified by sets of indices denoted C. Thus C1,
C2, etc. represent alternative reserve selections. Not all sets of
cells are feasible choices due to economic, social or political
constraints. The collection of all feasible reserve selections is
denoted C.

Species s occurs in spatial cell c with probability pscm under
model m. The nominal, i.e., best available estimate of pscm is
given by p̃scm. U(˛, p̃) is an info-gap model for the uncertain
deviation between the true probability distribution and the
best estimate (Ben-Haim, 2006).

Rsm(C, p), referred to as a representation, is a performance
function (e.g., abundance, population count, number of occur-
rences), for species s based on model m in reserve network
C, where the probability in each cell is given by pscm. These
performance functions are defined so that a large value is
preferable to a small value. Furthermore, we will express our
performance requirements by stating minimal acceptable
target values of performance. That is, reserve C has acceptable

performance, based on the probability distribution pscm, if
Rsm(C, p) exceeds the target value Ts.

Before worrying about uncertainty, our reserve-planning
task is to choose a reserve structure (including N cells) whose
biodiversity performance value is greatest. Intuitively, when
planning a robust reserve, we begin to worry about uncertainty
and deal with it by choosing a reserve structure whose bio-
diversity performance value is reasonably certain to be good
enough, and whose immunity to uncertainty is as large as pos-
sible, given certain minimal required outcomes.

We next describe some objectives (performance functions)
used commonly in reserve selection. Then we describe an info-
gap model for uncertainty in the probability of occurrence
distribution of a species. Finally, we derive the robustness
functions for potential reserve designs.

2.3. Performance functions for reserve selection

The following discussion is, for convenience, in terms of
species, which is our shorthand for any biodiversity feature
(species, land cover type, vegetation community type) of con-
servation interest.

Expected number of occurrences (e.g., ReVelle et al., 2002;
Cabeza, 2003). The total statistical weight of each species s
in cells indexed by C, based on model m, is:

Rsm(C, p) =
∑
c ∈ C

pscm, (1a)

In this formulation pscm could also denote, for instance, area
coverage of a vegetation community type. A typical objective
would be to obtain with least cost a given proportion of occur-
rences for each species.

Probability of having at least one occurrence (Haight et al., 2000;
Polasky et al., 2000; Araujo and Williams, 2000). The probability
of each species s occurring at least once in reserve C is, under
model m:

Rsm(C, p) =
[

1 −
∏
c ∈ C

(1 − pscm)

]
. (1b)

In this formulation a probability target could be set for each
species and the question would be which set of sites achieves
this target with least cost.

Reserve value via benefit functions (Arponen et al., 2005).
Reserve value V(C) is a sum over values of individual species:

V(C) =
∑

s

Vs(C) =
∑

s

vsf (Rsm(C, p)), (1c)

where vs is the weight of species s, and f() is an increasing
function of representation, which can be defined for exam-
ple via Eq. (1a). The objective is to achieve highest possible
value for the reserve network given a constraint on the total
value of land that can be obtained. In the benefit function
approach, the target Ts is actually a reference level at which
the species gets value vs, i.e., f(Ts) = 1. Importantly, both over-
and under-representation (with respect to Ts) are valued—a
higher representation always implies higher value. A reason-
able form for f() would be a monotonically increasing function,
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which approaches an asymptote with high Rsm and which has
f(0) = 0. Note that a typical reserve selection formulation with
a target level set Ts for the expected number of occurrences
(Eq. (1a)), Rsm(C, p) > Ts, actually is a special case of (1c) with
vs = 1 and f() being a unit step function with the step located
at Ts.

2.4. Info-gap uncertainty models

Info-gap models can be used to represent a wide variety of
prior information about uncertain probabilities. In this sec-
tion we will discuss three different info-gap models, address-
ing absolute errors, fractional errors, and asymmetrical error
intervals.

Our best estimate of the probability of occurrence of species
s, in cell c, based on an ecological model m, is p̃scm. That we use
probabilities implies that the actual occurrence of species will
be a stochastic event. Additionally, these probabilities them-
selves are highly uncertain—we do not know their true values,
and an info-gap model is used to represent this uncertainty. An
info-gap model U(˛, p̃) for the probabilities of model m is a fam-
ily of nested sets of probability distributions pscm centered on
the best estimate p̃scm, where ˛ is a parameter describing a hori-
zon of uncertainty. Three different structures will be suggested
for the uncertainty model, but we first discuss the intuitive
idea.

Even though p̃scm is our best estimate, it could err by some
quantity, say by ˛. Letting pscm be the correct probability, then
|p̃scm − pscm| ≤ ˛. Under severe uncertainty (Ben-Haim, 2006),
we do not know the horizon of uncertainty, that is, we do not
have a meaningful estimate of the error, but info-gap theory
still allows us to specify an uncertainty model. This uncer-
tainty model is a family of nested intervals of possible pscm

values:

|p̃scm − pscm| ≤ ˛, ˛ ≥ 0. (2)

These ideas can be formalized in various ways. The follow-
ing envelope-bound model will often be useful:

U(˛, p̃) = {0 ≤ pscm ≤ 1 : |p̃scm − pscm| ≤ ˛wscm,

for all s, c, m}, ˛ ≥ 0. (3)

The set U(˛, p̃) contains all probabilities pscm ∈ [0, 1] whose
deviation from the best estimate, p̃scm, is bounded. Impor-
tantly, the “uncertainty weights” wscm modulate the fractional
errors. A large value of wscm is chosen for particular indices,
scm, if the corresponding probability pscm tends to vary more,
or be less certain than others. Conversely, small uncertainty
weights indicate relatively reliable probability estimates. For
example, when confidence intervals are available for the prob-
ability estimates from model m, one can choose each uncer-
tainty weight proportional to the size of the (lower half of the)
respective confidence interval. The bound is determined by
the horizon of uncertainty, ˛, which is unknown. Thus the
info-gap model is not a single set, but rather a family of nested
sets.

Other info-gap models can be useful. In Eq. (3), the terms
˛wscm represent absolute error in the probability. A typical

alternative is to consider uncertain fractional error:

U(˛, p̃) =
{

pscm ≥ 0 :
∣∣∣pscm − p̃scm

p̃scm

∣∣∣ ≤ ˛w′
scm,

for all s, c, m

}
, ˛ ≥ 0, (4)

which is equivalent to Eq. (3) with wscm = w′
scmp̃scm.

The info-gap models in Eqs. (3) and (4) entail symmetric
uncertainty intervals (except for the non-negativity require-
ment). Asymmetric uncertainty intervals can be introduced
with

U(˛, p̃) =
{

0 ≤ pscm ≤ 1 : p̃scm(1 − ˛wL,scm) ≤ pscm

≤ p̃scm(1 + ˛wU,scm), for all s, c, m
}

, ˛ ≥ 0 (5)

in which wL and wU correspond to lengths of lower and upper
halves of confidence intervals, respectively. An asymmetric
interval may be appropriate when working with bounded
quantities, such as probabilities. Other more complex models
deal with dependencies between parameters and other fea-
tures of underlying models (Ben-Haim, 2006).

2.5. Robustness

The only probability distribution that we know is that of
the best estimate, p̃scm. Based on this distribution, we would
choose the reserve whose robustness is greatest for a specific
performance requirement.

Consider first a performance function ((1a) or (1b)), Rs(C, p),
for a given species s. We wish to evaluate a potential reserve,
defined by its set of indices C. The reserve C is acceptable for
species s (based on the best-estimated probability distribu-
tion p̃sc), if the performance function exceeds the target value,
Rs(C, p̃) − Ts ≥ 0.

The robustness question for species s in this reserve is: how
wrong can p̃ be, without jeopardizing the required perfor-
mance of reserve C? The robustness, ˆ̨ s(C, T), of species s in
reserve C given performance target Ts, is the greatest horizon
of uncertainty up to which C has adequate performance:

ˆ̨ s(C, T) = max

{
˛ :

(
min

p ∈ U(˛,p̃)
[Rs(C, p) − Ts]

)
≥ 0

}
. (6)

ˆ̨ s(C, T) trades robustness to uncertainty against the
demanded performance: as the target value Ts gets larger
(implying stricter ecological requirements) the robustness
ˆ̨ s(C, T) gets smaller. High performance is more vulnerable to
epistemic limitations (e.g., model uncertainty or data error)
than low performance. Stated differently, the attainment of
demanding conservation goals stretches the probability data
p̃sc to the limit; the vulnerability to errors increases as the
demands on the data-base grow.

In practice this means that in our reserve selection formu-
lations (Eqs. (1a) and (1c)) the optimal reserve structure based
on nominal distributions is likely to have zero robustness for
at least one species. Assume, for example, a reserve selection
problem where a target number of populations has been set
for each species, and the aim is to achieve this representation
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with minimal cost (area). The optimal solution for this prob-
lem is by definition such that no sites can be removed from
the solution without causing a failure to meet the target for at
least one species. If the solution consists of many small selec-
tion units (as it would in real landscape-level planning), some
species will be just above the representation target level. Thus,
this solution would be robust to little uncertainty. Any error in
the distribution information for a species represented just at
the required target level may cause the target to be failed for
that species.

We next extend the robustness defined in Eq. (6), by con-
sidering multiple species s and alternative (species-specific)
models m. The reserve indexed by C is acceptable, based on the
best estimated probability distribution p̃, if the performance
function exceeds the target values, Rsm(C, p̃sm) − Tsm ≥ 0, for
each of species s and each model m. Use of multiple mod-
els may be reasonable for example when AIC-based model
fitting (Burnham and Anderson, 2002) suggests multiple plau-
sible, yet structurally different models.Now the robustness of
reserve C, given performance targets Tsm, is the greatest hori-
zon of uncertainty up to which C has adequate performance
on all species and with all models:

ˆ̨ = ˆ̨ (C, T) = max

{
˛ :

(
min
s,m

[
min

p ∈ U(˛,p̃sm)
Rsm(C, p) − Tsm

])
≥ 0

}
.

(7)

The overall robustness of the reserve plan ˆ̨ trades off
against the demanded performance targets Tsm in the same
way as ˆ̨ s(C, T): robustness goes down as the target values go
up. Examination of Eq. (7) reveals that ˆ̨ equals the robustness
of the least robust species-model combination:

ˆ̨ (C, T) = min
s,m

ˆ̨ sm(C, T) (8)

where ˆ̨ sm denotes the robustness of species s using model
m. We will prefer reserve C over reserve C′, if the former has
greater robustness to uncertainty in the probabilities, at the
same target levels T:

C � C′ if ˆ̨ (C, T) > ˆ̨ (C′, T). (9)

The strength of the preference for C increases as the
magnitude of the difference between the robustness values
increases. The info-gap robust-optimal reserve, for perfor-
mance targets T, is the set of cells whose robustness is great-
est:

C∗(T) = arg max
C

ˆ̨ (C, T). (10)

We can “read” this relation as: the robust-optimal reserve is
the reserve structure C*, which maximizes overall robustness
ˆ̨ (C, T).

Computationally, it is relevant to observe that the perfor-
mance of our reserve is lowest when the probabilities are at
the lower bounds of the intervals defined by any of the Eqs.
(3)–(5). Thus, for any given target T and reserve structure C,
ˆ̨ sm(C, T) may be calculated by using binary search to pinpoint
the exact value of ˛, for which Rsm(C, p) − Tsm = 0 for at least one

species. Then, the robustness of the reserve is a minimum over
these species-specific values (Eq. (8)). If the robustness is <0,
then reserve C fails to achieve the given target for at least one
species.

2.6. Opportuneness

In info-gap terminology, “opportuneness” is defined as the
lowest level of uncertainty that must be present for a sweeping
success to be possible. Intuitively, locations with very uncer-
tain biological value could be very bad but also possibly very
good. Opportuneness aims at exploiting the potential for bet-
ter than expected biological outcome latent in such locations.
This is expressed by the opportuneness function (the dual of
the robustness function):

ˆ̌ (C, T) = min

{
˛ :

(
min
s,m

[
max

p ∈ U(˛,p̃sm)
Rsm(C, p) − As

])
≥ 0

}
,

(11)

where ˆ̌ is the opportuneness, and As is an aspiration level
for species s. The aspiration level would be set to a value that
indicates a very good conservation outcome.

Low opportuneness means that the nominal estimates
must be severely wrong before substantial success is possi-
ble, which is presented by a large value of ˆ̌ (C, T). In contrast,
high opportuneness means that only small errors in nominal
estimates are required for success to be possible, represented
by a small value of ˆ̌ (C, T). Different reserve structures will
have different robustness and opportuneness characteristics.
In reserve planning, it may be a good strategy to sacrifice some
biological performance or some robustness in return for high
opportuneness. For example, an area that is remote and poorly
surveyed may have high uncertainty about the biological value
residing there. On the other hand, high uncertainty implies the
possibility of the area proving much more valuable than what
is presently assumed.

3. Results

3.1. Simple reserve planning for robustness using the
expected number of occurrences

For the purpose of demonstration, consider the following
reserve design problem. Fifteen sites are available for inclusion
in a reserve, and the political and economic exigencies allow
for the selection of three of those sites. The decision-makers,
after careful deliberation, have indicated that the goal of plan-
ning is to maximize the sum of the probability of occurrence
(expected number of populations) across three species in the
reserve sites (performance function of Eq. (1a)). Estimates of
the probability of occurrence for each species at each site are
available, as are measures of uncertainty (Table 2).

The optimal solution to this problem can be found by
inspection, by first considering the situation where the tar-
get level for all species is set to 1.0. Species Z is found only at
sites 10–12, and the solution requires taking any two of these
sites to achieve the target. Since species X is not well repre-
sented in these sites, the third site in the reserve should have a
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Table 2 – Data for reserve selection example

Site (c) Species X Species Y Species Z

pXc wXc,L wXc,U pYc wYc,L wYc,U pZc wZc,L wZc,U

1 0.9 0.1 0.05 0.5 0.1 0.1 0 0 0.5
2 0.95 0.2 0.03 0.5 0.5 0.3 0 0 0
3 0.85 0.1 0.04 0.5 0.5 0.5 0 0 0
4 0.8 0.1 0.08 0.4 0.1 0.3 0 0 0
5 0.7 0.3 0.1 0.4 0.3 0.1 0 0 0
6 0.6 0.3 0.2 0.5 0.5 0.3 0 0 0
7 0.5 0.3 0.3 0.5 0.1 0.4 0 0 0
8 0.4 0.5 0.5 0.4 0.5 0.5 0 0 0
9 0.4 0.1 0.1 0.4 0.1 0.2 0 0 0

10 0.3 0.1 0.15 0.5 0 0.1 0.4 0.1 0.4
11 0.1 0 0.05 0.6 0 0.2 0.7 0.3 0.2
12 0.1 0 0.1 0.3 0 0.1 0.9 0.5 0.1
13 0 0 0.2 0.4 0 0.05 0 0 0
14 0 0 0.4 0.4 0 0.1 0 0 0
15 0 0.2 0.2 0.4 0 0.3 0 0 0

Nominal probabilities of occurrence (p), and measures of uncertainty for three species at fifteen candidate sites. Non-symmetric error intervals
are given with wL and wU giving hypothetical relative error rates related to lower and upper halves of confidence intervals, respectively.

high probability for species X, which suggests one of sites 1–4.
Further inspection reveals that site 4 should never be chosen
because site 1 has higher nominal probabilities and both lower
and upper bounds of site 1 exceed those of site 4. Tentatively,
one could pick site 2, which has highest nominal probability
for species X. The reserve design [2, 10, 11] has a minimum
aggregate sum of probability of 1.1 (it is limited by species Z).
We can actually improve the performance by selecting site 12
instead of 11: reserve design [2, 10, 12] achieves a minimum
aggregate sum of 1.3, which turns out to be the optimal reserve
design, for this particular performance function, under perfect
certainty. Note, however, that this solution is quite sensitive
to uncertainty; in particular, the uncertainty associated with
species Y at site 2 is quite high. If uncertainty is a concern,
it might be better to choose reserve design [1, 10, 12]. This
entails a small sacrifice in the probability of occurrence of
species X, but affords some protection from uncertainty about
the probability of occurrence of species Y. Thus, considering
the uncertainty in the probabilities of occurrence motivates
the need for info-gap decision theory.

The solution to this reserve design problem using info-gap
theory can be found by embedding the performance func-
tion (Eq. (1a)) into Eq. (6), considering the uncertainty model
(Eq. (3)), and calculating the robustness, ˆ̨ , for a range of tar-
get values T for the performance criterion. (Note that we are
using only one model here, and the target value is not species-
specific). The full info-gap solution as a function of target level
is shown in Fig. 2. The outer boundary of this figure, shown
in bold, includes the Pareto-optimal solutions (e.g., Chankong
and Haimes, 1968)—the solutions that cannot be improved on
without either decreasing the reservation targets of the most
vulnerable species or the robustness of the solution.

Under perfect certainty, ˛ = 0, the optimal design is the
set of sites [2, 10, 12] and it achieves a performance target
of 1.3, as noted above. However, as the desire for robustness
to uncertainty increases, two things happen: the guaranteed
achievable performance T decreases, and different reserve
designs become favored. For example, at ˆ̨ = 0.5, design [1, 11,

12] achieves the highest assured performance (of 1.05). With
a low requirement for robustness, reserve design is primar-
ily based on high nominal probabilities, whereas when high
robustness (high ˆ̨ ) is required, the solutions consist of sites
having low standard errors (high certainty) for the nominal
probabilities. Note that if the uncertainty weights, wsc, repre-
sent standard errors in the estimates of psc, ˆ̨ = 0.5 is roughly
equivalent to the uncertainty represented by a 40% confidence
interval.

For various desired target levels, a number of the reserve
designs are tied for maximum robustness, but additional infor-
mation could be used to resolve those ties. For example, at

Fig. 2 – Robustness for different solutions for the simple
reserve planning example (Table 2). The lines correspond to
different solutions. At different robustness requirements (˛)
different solutions are robust-optimal. Alternative equal
solutions are in brackets, and equally exchangeable sites in
solutions are listed within parentheses. With low values
for ˛ high nominal probabilities are characteristic for the
selected sites. With high ˛ sites with moderate
probabilities but low uncertainty (small standard errors)
dominate the solution.
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target level 1.0, highest robustness is achieved by two designs,
[1, 11, 12] and [2, 11, 12], which each have ˆ̨ = 0.75. Yet fur-
ther inspection reveals that these two reserve designs are
equal only with respect to robustness of the most vulnerable
species: the designs have robustness vectors (1, 4, 0.75) and
(0.75, 0.8, 0.75) for species X, Y and Z, respectively. If we use
the robustness of the next most vulnerable species to resolve
the tie, this indicates that [1, 11, 12] is a better design than
[2, 11, 12].

3.2. Opportuneness

Designs can be compared in terms of their nominal perfor-
mance, as well as the robustness and opportuneness offered
by them. Of the designs compared in Fig. 3, [1, 10, 12] is a clear
overall winner: First, it has highest nominal performance, 1.3
(at ˛ = 0). Then in terms of robustness, [1, 10, 12] is preferred
with high targets and the design is never much less robust
than the alternatives. Furthermore, [1, 10, 12] has highest
opportuneness across all targets (lowest uncertainty required
to allow the possibility of meeting the aspiration).

The choice between [6, 10, 11] and [4, 11, 12] would not
be so clear (Fig. 3). At high targets design [4, 11, 12] is more
robust than [6, 10, 11] whereas with low targets the situation is
reversed. In terms of opportuneness [6, 10, 11] is overall supe-
rior to [4, 11, 12]. Thus the choice between [4, 11, 12] and [6,
10, 11] would depend on planning priorities. Design [4, 11, 12]
is preferred when assuming robust planning and low to mod-
erate errors in the models. Design [6, 10, 11] is preferred if
robustness to high error is required, or if the planning objec-

Fig. 3 – Comparison of three reserve designs in terms of
robustness and opportuneness. Results for designs [1, 10,
12], [6, 10, 11] and [4, 11, 12] are marked by solid, dotted
and dashed lines, respectively. For each design, the lower
half of the line shows robustness (ˆ̨ , Eq. (7)) of the design at
the respective target value. The upper half of the line shows
opportuneness ( ˆ̌ , Eq. (11)), the minimum uncertainty
required to allow the possibility of meeting the aspiration.

tive is to gamble for the best possible outcome (i.e., to take
highest opportuneness).

In general, both robustness and opportuneness functions
for different designs can either cross or not. If they do not
cross, then one design is always preferred over the other, with
the distance between the functions indicating the strength of
preference. If the functions cross, then there is a reversal of
preference at the crossing point.

3.3. Probability of one occurrence

An alternative formulation of the performance objective (Eq.
(1b)) asks for a set of sites that contains at least one popu-
lation for each species with a very high probability. With the
case of Ts = 0.9999, this target could be achieved, e.g., by two
sites with probabilities 0.99 for each species or four sites with
probabilities of 0.9. It is worth noticing that this formulation
is extraordinarily sensitive to uncertainty. Because probabil-
ities accumulate in a multiplicative manner in Eq. (1b), the
achievable target will be very sensitive to errors in cell-specific
probabilities.

Going back to the example of Table 2 and looking at species
X, it appears that choosing sites [1, 2, 3] would give a prob-
ability of 1 − (1 − 0.9)(1 − 0.95)(1 − 0.85) = 0.99925 of having at
least one occurrence of the species. For conservation deci-
sion making this probability appears close enough to absolute
certainty. The situation changes if uncertainty is acknowl-
edged. At ˛-level 1.0 (representing a maximum uncertainty
of one standard error), we robustly achieve a probability of
1 − (1 − 0.8)(1 − 0.75)(1 − 0.75) = 0.9875. At ˛ = 2.0 we achieve a
probability of 0.9425, which may no longer be satisfactory. As
in Fig. 2, higher uncertainty implies that a lower target can be
achieved reliably.

Furthermore, Eq. (1b) implicitly relies on the assumption
that population dynamics (and probabilities of occurrences)
are independent between selection units. With selection units
of the scale relevant for land-use planning (∼hectares), such
independence cannot generally be expected for sites that are
close to each other. Ovaskainen and Hanski (2003) find that if
the degree of correlation between the occupancy states of two
patches is �, then the effective number of independent popula-
tions in a system of N patches is Ne = N/[(N − 1)� + 1] instead of
N. In our example, if sites 1–3 are close to each other and have
fully correlated dynamics, then at ˛ = 1.0, we only achieve a
probability of 0.8 of having an occurrence for the species. This
simple analysis suggests that other sites farther away with
lower correlation would be needed to achieve a higher target
probability of occurrence. Thus, considering uncertainty may
change our perception of the safety of our conservation plan,
from the perspective of maintaining populations of species.

3.4. Robust reserve planning using a benefit function

The final reserve planning formulation we consider differs
from the two previous ones in that no strict target (or aspi-
ration) levels for individual species representations are given;
rather, performance is measured by a continuous benefit func-
tion that is a weighted sum over species (Eq. (1c)). The optimal
reserve structure based on nominal distributions is the one
that gives the highest value of the summed continuous ben-
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efit functions; let us assume this optimal value is V*. (Finding
V* is an optimization task in itself.)

The optimal value, V*, is obtainable with zero robustness
( ˆ̨ = 0), that is, with no error in the nominal distributions p̃.
However, we may be willing to forgo some value in favor of
robustness to uncertainty in the design. That is, while the
maximum performance is V*, there may be some lower level,
say (1 − �)V*, that is satisfactory. Our task, then, is to find
the reserve design that maximizes robustness while achieving
this satisfactory level of performance. We use info-gap meth-
ods to do this, replacing Eq. (7) with

ˆ̨ (C, T) = max

{
˛ :

(
min
s,m

[
min

p ∈ U(˛,p̃sm)
V(C) − (1 − �)V∗

])
≥ 0

}
,

(12)

where � ∈ (0, 1) is the parameter specifying how much value
we are willing to give up in return for robustness.

4. Discussion

The presence or persistence of biological value in reserve
sites is uncertain for many reasons, including observation
error, inaccuracies of distribution modeling, spatial popula-
tion dynamics, the extinction debt, anthropogenic threat, suc-
cession, land-use changes and climate change. In general,
most of these factors are ignored in computational reserve
design, which may be based directly on presence–absence data
or on model-predicted probabilities of occurrence. It follows
that even a simple uncertainty analysis might reveal impor-
tant weaknesses in reserve candidates. Even so, uncertainty
analysis is all but missing from reserve selection methodology.
The aim of the present work is to lay out a methodologi-
cal basis that can be used as a framework for implementing
uncertainty analyses in reserve planning. We point out that
traditional reserve selection objective functions need to be
modified to include effects of uncertainty. Actual search for
the robust-optimal reserve structure is still a site selection
optimization problem, which can be solved using typical opti-
mization and approximation techniques, including stepwise
heuristics, integer-programming and stochastic global search.

Uncertainty analysis has the potential to change conserva-
tion decisions. Do we think the conservation outcome is good
enough based on best estimates? Are we sure the conserva-
tion outcome is good enough? These are different questions.
Of two options with equal or near equal nominal value, the one
which is more certain is better: this is old news in economics,
but the message applies equally to conservation. Essentially,
our uncertainty analysis is about understanding and quan-
tifying tradeoffs between apparent biological value and the
certainty of that information (see Table 1). To reiterate, best
places are sure to have high value, robustness needs attention
when both value and uncertainty are high, and opportuneness
exists when apparent value is low but uncertain.

The present work concentrates on a couple of relatively
simple reserve selection formulations, and we focus our
uncertainty analysis on errors in predicted probabilities of
occurrence from habitat models. However, we emphasize that
the utility of the info-gap theory is not limited to these cases.

There are many other quantities that may be used to
improve reserve planning algorithms and that are uncertain.
For instance, Moilanen et al. (2005) outlined a method to
aggregate reserves that avoids the use of an arbitrary bound-
ary length penalty. Instead, it produces aggregated reserves
based on distributions that have been smoothed according
to species-specific dispersal capabilities. However, dispersal
distance distributions are notoriously difficult to estimate cor-
rectly (e.g., Thomas et al., 2002). Dispersal is often handled
via normalized dispersal kernels (e.g., Kot et al., 1996), which
specify the distribution of dispersal distances for individuals
leaving a focal site. One common dispersal kernel is the neg-
ative exponential, exp(−˛sdij), where ˛s is a species-specific
parameter describing the width of the dispersal kernel. There
are two ways to info-gap this. In the simplest case, one could
say that our estimate of ˛s uncertain, and the question would
be, is our conservation decision robust to this uncertainty.
Alternatively, one could specify that both the parameter and
the function itself are uncertain. So, the negative-exponential
with a given parameter would be the nominal estimate of the
dispersal kernel, but we could specify that the shape of the
function is uncertain. Published info-gap formulations include
cases where the uncertainty model is, for example, a fam-
ily of monotonously decreasing normalized functions, which
have a bounded deviation from a given nominal estimate (see
Ben-Haim, 2006). Such a formulation would be appropriate for
analyzing the effects of uncertainty in the (tails of the) disper-
sal kernel.

Distance-dependent correlation in population dynamics
(or environmental noise) is another factor which may have
great impact in PVA analyses or reserve planning (e.g.,
Moilanen and Cabeza, 2005). A decaying-by-distance correla-
tion function would be a very similar, although even more
uncertain, target for info-gap than a dispersal kernel. These
functions may be troublesome to estimate because obtaining
long time series of reliable large-scale data for model fitting is
very hard. Furthermore, spatial population dynamics may be
most severely affected by rare events (very good or very bad
years), which are strong and correlated at large scales (e.g.,
Thomas et al., 2002). Data of such events is rarely available and
thus the correlation scale and strength of environmental noise
would be a very uncertain quantity that often gets ignored or
underestimated in spatial population models or reserve plan-
ning.

Info-gap decision theory provides a way to guard against
epistemic uncertainty, but it does not relieve the decision-
maker from the challenge of setting clear objectives. The
choice of the performance function is not trivial, nor is it the
purview of the consulting scientist. Rather, it is an expression
of the political and social values governing the reserve design.
There are multiple elements of this expression of values: the
choice of the performance function, Rsm(C, p); the choice of the
target values, Tsm; the choice of species (or biodiversity ele-
ments) to consider in the evaluation; and the method used to
balance species against each other (a minimum function in Eq.
(7), a fixed weighting in Eq. (12), and alternatives exist). Indeed,
one of the central lessons of info-gap theory—that satisficing
is more robust than optimization—forces consideration of the
ultimate objectives of reserve design. In this endeavor, it is
important to identify which elements are the jurisdiction of
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scientific assessment, and which are the jurisdiction of polit-
ical discourse.

In summary, we recommend info-gap uncertainty anal-
ysis as a standard practice in computational reserve plan-
ning. The need for robust reserve plans may change the way
biological data are interpreted. It also may change the way
reserve selection results are evaluated, interpreted and com-
municated. Information-gap decision theory provides a stan-
dardized methodological framework in which implementing
reserve selection uncertainty analyses is relatively straight-
forward. We believe that alternative planning methods that
consider robustness to model and data error should be pre-
ferred whenever models are based on uncertain data, which
is probably the case with nearly all data sets used in reserve
planning.
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