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Spatial randomness
The Israel National Cancer Registry reported in 2001 that cancer incidence rates in the Haifa area are roughly
20% above the national average. Since Haifa has been the major industrial center in Israel since 1930, concern
has been raised that the elevated cancer rates may be associated with historically high air pollution levels.
This work tests whether persistent spatial patterns of metrics of chronic exposure to air pollutants are
associated with the observed patterns of cancer incidence rates. Risk metrics of chronic exposure to PM10,
emitted both by industry and traffic, and to SO2, a marker of industrial emissions, was developed. Ward-
based maps of standardized incidence rates of three prevalent cancers: Non-Hodgkin's lymphoma, lung
cancer and bladder cancer were also produced. Global clustering tests were employed to filter out those
cancers that show sufficiently random spatial distribution to have a nil probability of being related to the
spatial non-random risk maps. A Bayesian method was employed to assess possible associations between the
morbidity and risk patterns, accounting for the ward-based socioeconomic status ranking. Lung cancer in
males and bladder cancer in both genders showed non-random spatial patterns. No significant associations
between the SO2-based risk maps and any of the cancers were found. Lung cancer in males was found to be
associated with PM10, with the relative risk associated with an increase of 1 μg/m3 of PM10 being 12%. Special
consideration of wards with expected rates b1 improved the results by decreasing the variance of the
spatially correlated residual log-relative risk.
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1. Introduction

In 2001, the Israel National Cancer Registry presented data showing
that incidence rates of several cancers in the Haifa district in the years
1984–1999 were above the national average rates (Barchana, 2001).
Although the report indicated high morbidity rates, it did not suggest
possible causes for these observations. Haifa Bay Area (HBA) has been
Israel's primary industrial region since the 1930s. It hosts petroleum
refineries (8 million tons/year), an oil fired power plant (425 MW), and
several large petrochemical, chemical and agrochemical industries. It is
also the home of many medium and small size factories, and of Israel's
largest seaport (Fig. 1). These industries, aswell as the dense population
in the area, result inmuch trafficwith a large proportion of heavy trucks.
In general, emissions from motor vehicles increased sharply in the last
3–4 decades,mainly due to increased traffic volumes.Moreover, vehicle
emissions inHBA are relatively high becauseof the steep city terrain and
due to poor maintenance of part of the vehicle fleet. Consequently,
public concerns were raised that the elevated cancer rates might be
associated with environmental exposures of HBA residents to airborne
pollutants originating from the industries and traffic in the area.

Evidence that air pollution is associated with various diseases and
mortality causes has been accumulated since the 1970s. At first,
temporal relationships between occurrence of adverse health effects
and exposure to various air pollutants were sought, accounting for
possible time lagbetween the supposedly triggering exposure event and
the vital status data (Dockery et al., 1993; Nyberg et al., 2000; Schwartz,
2000; Sunyer et al., 2003; Pope et al., 2004; Brunekreef and Forsberg,
2005). In particular, associations between increased PM10 concentra-
tions and adverse health effects (including lung cancer) have been
reported (cf. Dockery et al., 1993; Pope et al., 1995, 2002; Jerrett et al.,
2005). High PM concentrations were found to promote lung cancer,
possibly by chronic irritation of the lining of the respiratory tract or by
decreasing the clearance rates in the lungs. Chronic exposure to
substandard ambient PM concentrations was also found associated
with increased morbidity and mortality. Similarly, SO2 is a known
respiratory irritant thatmay act as a promoter or co-carcinogen (Nisbet
et al., 1984). It has been associated with respiratory outcomes and was
suggested to have an indirect role in bioactivation and development of

http://dx.doi.org/10.1016/j.scitotenv.2010.06.031
mailto:dbroday@tx.technion.ac.il
Unlabelled image
http://dx.doi.org/10.1016/j.scitotenv.2010.06.031
Unlabelled image
http://www.sciencedirect.com/science/journal/00489697


Fig. 1. The Haifa Bay study area with topographic contours every 50 m, main roads, the location of the major industrial plants, and the towns surrounding the industrial zone.
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damage from exposure to co-pollutants, e.g. PM-bound carcinogenic
polyaromatic hydrocarbons (Pott and Stöber, 1983; Bascom, 1996).
Pope et al. (1995) suggested that lung cancer mortality was more
strongly associated with sulfate particles than with simply fine PM. In
HBA, like inmany other regionsworldwide, sulfatemakes up the largest
mass fraction of fine PM and is originated both from atmospheric
oxidation of locally emitted SO2 under conditions of high solar radiation
and from long range trans-boundary transport. Spatial patterns of
risk metrics can be represented by pollutant concentration maps
combined with geo-referenced demographic data (Maslia et al., 1994;
Georgopoulos and Lioy, 1994; Phillips et al., 1997). The spatial
distribution of ambient pollutants can be obtained using atmospheric
dispersion models or by spatial interpolation of monitoring data.

Due to the long latency period of most cancers, their numerous
multi-factorial possible causes, and the common lack of detailed
individual-level activity log files, the possibly small contribution of air
pollution to cancer etiology makes the isolation of its effect extremely
difficult (Doll and Peto, 1981). The influence of confounding factors
such as genetic predisposition, smoking, life style, diet, occupation,
etc., need to be carefully accounted for to unmask the role of air
pollution on cancer if such a relationship exists (Samet et al., 2000;
Pope et al., 2002; Jerrett et al., 2005; Vineis et al., 2007). However,
normally there is a severe dearth of detailed long-term data on
individual-level risk factors and on complete exposure history,
especially in cases of chronic exposure to minute yet potent pollutants
such as carcinogenic, mutagenic and genotoxic agents. In the absence
of patient-specific data, composite level data are frequently used, with
the underlying assumption that the aggregate approach provides
exposure–response relationships that are reasonable surrogates of the
individual's actual exposure–response relationships (e.g. Best et al.,
2001). Furthermore, contemporary GIS techniques enable detailed
mapping of estimated risk metrics and of observed health indicators,
thus facilitating the study of relationships between them at different
spatial scales.

This work aims at assessing whether spatial patterns of chronic
exposure to ambient pollutants at substandard levels can be linked to
the spatial distribution of observed health indicators (cancer
incidence rates). However, the complex topographic–meteorological
conditions in HBA, the relatively small and heterogeneous population
and its patchy spread in the study area, and the lack of any individual-
level data on possible confounders apart from a complete residential
history information called for the development of a tailored method
for assessing the relationship between chronic exposure to airborne
pollutants and cancer incidence rates in HBA.We believe that in many
regions worldwide such data limitations are common and hence the
chain of procedures presented may find wide application.

2. Materials and methods

2.1. Morbidity data and health indicators

The morbidity data available for this study was an individual-level
database that contained the geographic coordinates of the residences
of cancer patients that were diagnosed between 1995 and 1999.
Overall, this dataset included 1452 individual cases that were nearly
equally distributed among the three cancer types studied (Table 1).

The Israel National Cancer Registry (INCR) is a population based
central tumor registry. Reporting to the registry is mandatory since
1982 and covers all public and private medical facilities in the country
(medical institutions and pathology laboratories). Cancer mortality is
evaluated against data obtained from district health offices and from
the central population registry of the Ministry of Interior. The most
recent survey (Fishler et al., 2003) revealed that the completeness of
the records was above 94%. Apart from medical data, the only
demographic attributes collected are the place of birth, immigration
date, detailed residence history, religion, and a few other personal
data. Nonetheless, smoking habits, occupational history and other
common risk factors and/or confounders (e.g. body mass index) are
not recorded. The relatively small population in HBA (ca. 500,000)
implies small number of cancer cases and poses difficulties in
constructing reliable health indices and in obtaining significant
statistical inference. Furthermore, the population at risk in HBA is
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Table 1
Statistics of cancer incidence rates (1995–1999) and of demographic data in HBA. The complete database includes data for all the 143 wards. Wards with no cases and expected
incidence rate b1 were excluded from the reduced datasets.

Gender Observed Mean Median Sample
variance

Minimum Maximum Expected (based on
Israel average rates)

No. of wards excluded
from the reduced datasets

% of the total population
in the excluded wards

Population 473,300 3309.8 3400 2217.8 200 7600
SES 12.03 12 21.35 0 20
Lung cancer M 310 2.17 2 3.94 0 8 403.5 12 2.3

F 153 1.07 1 1.46 0 6 204.9 31 11.4
NHL M 257 1.80 2 3.06 0 10 197.7 21 5.9

F 228 1.59 1 2.76 0 7 256.4 24 7.6
Bladder cancer M 371 2.59 2 5.65 0 13 404.2 16 3.6

F 97 0.68 0 0.92 0 5 104.2 59 32.1
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very heterogeneous, comprising of many ethnic groups with diverse
life styles and cultural traditions, and living in communities that are
distributed very heterogeneously in the study area. The large number
of immigrants from the former Soviet Union that arrived to Israel in
the mid 1990s further complicated the analysis.

The database obtained from the Israel National Cancer Registry
contained records of individuals that met three criteria: (a) the
patients were diagnosed with either lung cancer, bladder cancer, non-
Hodgkin's lymphoma (NHL), or with more than one of these cancers
(b1% of the cases), in the years 1995–1999, (b) the patients lived in
the study area for at list 10 years prior to diagnosis, and (c) the
patients live in Jewish communities. Regarding (a), the cancer types
were selected based on reported associations between these cancers
and exposures to petrochemical and other industrial emissions (Sharp
et al., 1996; Yang et al., 2000; Pope et al., 2002; Johnson et al., 2003;
Guo et al., 2004; Soll-Johanning and Bach, 2004) as well as with traffic
emissions (Nyberg et al., 2000; Reynolds et al., 2004; Jerrett et al.,
2005). In addition, these cancers are relatively abundant among the
HBA population and their rates are among the highest in Israel
(Epstein et al., 1984). Due to differences between the adjusted rates in
males and females and the possible gender-distinct exposure routes,
gender-specific rates for each of the cancers were calculated.
Regarding criterion (b), the requirement of at least 10 years of
residency in the study area prior to diagnosis relates to the latency
period of cancer. Considering only cancer patients who resided in HBA
for at least 10 years prior to diagnosis works towards minimizing
possible confounding factors, since it omits from the study all the
immigrants from the former USSR that arrived to Israel during the
1990s and could have been exposed to uncontrolled/unknown risk
factors in their former places of residence. Finally, criterion (c)
excludes from the database cancer cases that resided in three non-
Jewish communities in the study area due to their very distinct
lifestyle. The population of these communities is less than 5% of the
total population in the study area and the number of cases excluded
range from b1% and up to 3% depending on the cancer type and
gender. All the cases in the rest of the communities were included in
the study regardless of their ethnicity. Therefore, the morbidity
dataset contained a total of 1417 cases (individual-level) for the three
cancers.

The nature of these data (i.e. the lack of any individual-level risk
factors) and the need to standardize them and to account for possible
confounders prescribed transforming the individual-level morbidity
data into ward-based morbidity indicators. Standardized Incidence
Rates (SIR) were calculated for the Central Bureau of Statistics census
wards in the study area. The use of SIR enabled standardization for age
and population density (Tamir, 1987; Ginsberg and Tulchinsky, 1992;
Kokki et al., 2001; Ginsberg et al., 2003). Standardization for ethnicity
(by parents' country of birth) had negligible effect on the crude SIR.
Yet SIR are known to have some inherent problems, especially in small
areas where the expected rates are small and result in a large variance
and lack of stability of the SIR (Julious et al., 2001; Meza, 2003; Ugarte
et al., 2006). Overall, out of the 143 wards in the study area between
32 and 80 (depending on the cancer type and gender) had no cases
whatsoever and were assigned a zero SIR. Most of these wards
contained very small population (mostly less than 750 inhabitants)
and no cases were expected irrespectively of the cancer risk. Data
from these last wards represent “noise” that may hamper the efforts
to assess if there are relationships between the health and risk indices.
Therefore, we constructed new datasets from which such wards
(specific for each cancer type and gender) were removed (Table 1).
Wards with SIR=0 in which the population was large enough that
cases could be expected based on the rates in the standard population
(whole Israel) were retained. The concise datasets (cancer and gender
specific) are termed hereinafter the reduced datasets and contain
distinct lists of wards. In the complete database, SIR for each cancer
and gender are reported for all the wards.

2.2. Spatial non-randomness

Since spatially randommorbidity patterns are not likely associated
with the inherently non-random air pollution data, the ward-based
cancer SIR were tested for global clustering, to distinguish those that
show spatial non-randomness. Testing the morbidity data for global
spatial randomness enabled the elimination of those cancer types
with random spatial distribution that could not be expected to relate
to the coherent spatial air pollution patterns. The search for general
clustering in each of the datasets is closely akin to the assessment of
autocorrelation (Lawson, 2001). We used Moran's I correlogram
(Oden, 1984) and Tango's C test (Tango, 2000; Kulldorff et al., 2003),
which due to their different inner structure complement each other.
Monte Carlo permutations (Good, 1994) provided the null distribu-
tion against which the actual measures were compared. A multiple
testing problem arises in both methods that usually requires
prescription of a more stringent significance level (Garcia, 2004), i.e.
αb0.05. Nonetheless, as we use these tests only as a pre-filter for
elimination of implausible cases, we chose to use α=0.05 and thus to
unduly elevate the chances of detecting spatial autocorrelations and
increase the probability of a type II error. However, the final inference
regarding possible associations between the risk metrics and cancers
incidence rates with spatial distributions that do show some spatial
autocorrelation is not compromised.

2.3. Risk metrics and confounders

HBA is characterized by topographic complexity, hence utilization
of standard atmospheric dispersion models is not advisable. More-
over, since a complete emissions inventory is not available for the
region, an exclusive dispersionmodel could not be developed for HBA.
However, owing to the relatively dense air quality monitoring
network (the mean spatial monitoring interval ranges from 3.2 to
5 km depending on the pollutant) we spatially interpolated the
monitoring data and generated long-term mean concentration maps
of SO2 and PM10 (Yuval et al., 2005; Yuval and Broday, 2006). The
correlation between the two concentration maps is low, unlike the



4432 O. Eitan et al. / Science of the Total Environment 408 (2010) 4429–4439
high correlation among the concentration maps of PM10, NOx and O3

(Yuval and Broday, 2006). The latter reflects the fact that SO2 is
emitted in HBA predominantly by the heavy industry whereas PM10 is
emitted from multiple sources: industrial, traffic-related and natural
(Yuval et al., 2008). The uncorrelated SO2 and PM10mapswere used to
produce two independent risk maps. Yet while it is noteworthy that
PM10 and SO2 were found to have independent associations with lung
cancer (Beeson et al., 1998), it should be emphasized that SO2 is not a
carcinogen by itself, unlike some PM components such as transition
metals and adsorbed organics. Nevertheless, SO2 can be regarded as a
proxy to other (carcinogenic) pollutants that are co-emitted from the
same sources. Moreover, it should be realized that since relative
spatial patterns are used as risk metrics, the risk maps are meaningful
even if the ambient concentrations are lower than the standard, and
regardless of the general decrease in the sulfur content of fuels over
the years and the related noticeable decline in ambient SO2

concentrations.
Cancer is known to have extended latency periods that in HBA

(like in many other places worldwide) goes back in time beyond the
available air pollution records. Since the selected cancer types have
latency periods of at least 10 years (Sharp et al., 1996), risk maps that
are based on concentrations measured in 1996–2002 (for SO2) or
2002–2004 (for PM10) may not be relevant if the spatial patterns have
changed over the years. Yet, since the locations of the main sources in
the study area as well as the averagemeteorology and topography did
not change over the years, spatial air pollution patterns are not
expected to change much if there has not been a considerable change
in the relative emission intensities among different sources. To test
the validity of the pollutant concentrationsmaps in relation to chronic
exposures that may promote health effects characterized by long
latency periods, we examined the consistency of the spatial patterns
over time. The variations between the concentration maps for the
separate years were compared to verify that the main features of the
spatial SO2 and PM10 patterns persist over long times. In particular,
the Pearson correlation between any two annual average pollutant
specific concentration maps was calculated at the pixel level
(N=1,000,000). Correlations between the yearly maps and a multi-
year averaged concentrations map (based on pollutant specific data
availability) were also calculated.

SO2 has been monitored in HBA at 17–20 stations since 1996.
Hence, maps of SO2 could be produced for the years 1996–2002. PM10,
on the other hand, is monitored in 8 stations only since 2002, and
valid PM10 interpolation maps could be produced therefore only for
the period 2002–2004. All the maps were produced using the kriging
interpolation technique (for details see Yuval et al., 2005; Yuval and
Broday, 2006). Desert dust has a large contribution to the total PM10

levels in Israel (Dayan and Levy, 2005). Since the chemical
composition and consequently the related health effects of dust
particles are different than those of anthropogenic PM from
combustion sources, conspicuous dust storms were removed from
the PM10 database (Yuval and Broday, 2006). To produce a ward-
based risk metrics (exposure to SO2 and PM10), the interpolated
concentration datawere averaged over each statistical ward. Thus, the
risk maps and the health indicator maps had a common spatial
resolution. In general, the ward-based risk metrics tend to represent
better small and regularly shaped wards in areas that are character-
ized by fairly spatially homogenous ambient concentrations rather
than larger and irregularly shaped wards with highly heterogeneous
concentrations.

The ward-based long-term average concentrations, representing
metrics of cumulative exposure, were overlaid over demographic data
and other ward-scale risk factors. Since no data on the actual
individual-level exposures or risk factors were available, we used
the group level ward-base socioeconomic status (SES) ranking,
obtained from the Central Bureau of Statistics. The SES ranking
reflects various socio-economical measures that characterize the
ward's population, including income, parents' education, apartment
size, possession of appliances, car ownership, etc. Hence, the SES
ranking represents, to some extent, few individual risk factors and
possible confounders. A higher SES (range from 1 to 20) signifies a
higher socioeconomic status, which is known to be negatively
correlated with parental smoking and child exposure to environmen-
tal tobacco smoke. It should be noted that the statistical wards are
designed a priori to include relatively homogeneous population with
respect to ethnicity, lifestyle, social class, and deprivation. Alterna-
tively, following recent works (e.g. Dabney and Wakefield, 2005;
Tzala and Best, 2008) we utilized the spatial distribution of SIR of lung
cancer in males as a proxy of risk from smoking when modeling the
rates of other cancers.

2.4. Testing for associations between risk and morbidity indices

Relationships between spatial patterns of the risk metrics and
those of the spatially non-random cancer morbidity indices were
estimated using a Bayesian hierarchical regression modeling frame-
work (Best et al., 2001; Pascutto et al., 2000), implemented in
WinBUGS (Spiegelhalter et al., 1998). Accordingly, the cancer risk of
each ward is estimated by borrowing information from the other
wards. This leads to improved risk estimates over those obtained
either by non-hierarchical models that treat each ward independently
or by pooling all the wards together and ignoring the between-area
variability (Richardson and Best, 2003). In brief, we assume that the
ward-specific baseline risk and relative risk are each realizations of
distinct joint probability distributions of the unknown baseline and
relative risks. The baseline risk represents the inherent risk due to
area-level factors such as age distribution, ethnicity, and the residual
effect of unobserved risk factors beyond the known or suspected
environmental risk factors. Typically for rare diseases, a Poisson
distribution is assumed for the disease risk. The Bayesian hierarchical
model took the following form

Oi
e

Poisson μið Þ
logμ i = logEi + α + ∑

j
βj Xij + θi ð1Þ

were Oi and Ei are the observed and expected cancer incidence rates in
the ithward, respectively (Ei are the group level fixed effects), α is the
mean log-relative risk of cancer for an unexposed person in the study
region relative to the standard population, βj is the log-relative risk
associated with a unit increase in exposure to the jth covariate Xij, and
θi are the random effects with exp θi the residual (unexplained)
relative risk in area i. The covariates may be known risk factors,
confounding variables, and effect modifiers. The latter may lead to a
type I error — a false positive conclusion that the cancer rates are
associated with the covariates. Due to lack of individual-level data on
effect modifiers (lifestyle, diet, housing conditions, smoking, etc.), we
used the between-area variation of the SES ranking as an area-level
risk factor that confounds the effect of environmental exposures.

Naturally, some area-level risk factors are unobserved or un-
known. Unmeasured or inadequately modeled area-level risk factors
that have a spatial structure could affect the calculation of the relative
risk of the environmental stressors. A possible way to assess if such a
spatial structure exists in the residual random effects is to incorporate
a spatial random effects component that accounts for the unexplained
residual spatial structure of the health effects. For example, Pope et al.
(2002) incorporated a metropolitan-based spatial random effects
component and were successful in removing the spatial structure of
the residual variation of the health effects model after accounting for
the relative risk of particulate air pollution. On the other hand, Jerrett
et al. (2005) could not remove the residual spatial autocorrelation in
the random effects component after accounting for individual
covariates and long-term exposure to PM2.5. To explore this issue



Fig. 2. Crude SIR maps for males: (a) lung cancer, (b) bladder cancer, and (c) NHL. All
the colored wards, including those with zero reported cases, were included in the
reduced datasets.
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we implemented a conditional autoregressive (CAR) convolution
prior model (Besag et al., 1991) that accounts for both the spatial
dependence and the unstructured heterogeneity of the random effects
term. Namely,

θi = Si + Hi ð2Þ

where Si accounts for unmeasured/unknown risk factors that are
spatially correlated and Hi accounts for unmeasured/unknown risk
factors that are independent across the study area.

For each cancer type and gender the models were employed twice,
once using data from all the 143 wards and once using the reduced
datasets. All the regression models were run with the between-area
variation of the SES ranking as a risk factor. The models in which the
SES ranking was the sole risk factor served as the benchmark models
against which models that accounted also for environmental risk
factors were compared. The results reported correspond to runs of
20,000 sweeps after a 30,000 iterations burn-in period. Two chains
were run for each model, so the results are based on 40,000 samples.
Brooks–Gelman–Rubin diagnostics (Brooks and Gelman, 1998) as
well as graphical checks of the chains were performed to assess
convergence. The relative risks (RR) reported are the quartile
percentiles and the median and mean values. For comparing the
different models we calculated the deviance information criterion
(DIC) (Spiegelhalter et al., 2002). Although this criterion cannot be
viewed as an absolute measure of the superiority of any one model, it
does give an indication of the relative fit of a set of candidate models
(Best et al., 2001), since models with a smaller DIC are better
supported by the data (models with DIC within 1–2 of the best model
are also strongly supported; Spiegelhalter et al., 2002). Finally, to
assess if we accounted for all the relevant risk factors we tested if the
variance of the residual log random effects term is spatially random.
This was done both by performing a spatial non-randomness test on
exp(θi) and by calculating the ratio of the variance of the spatially
structured random effects to the total variance of the random effects
(the sum of the variance of the structured and the unstructured
terms). If the residual relative risk,

residual RRi = exp Hi + Sið Þ; ð3Þ

shows a spatial structure, the presence of additional, unaccounted for
spatially correlated risk factors cannot be overlooked and further
covariates must be sought.

3. Results

3.1. Morbidity indices

Fig. 2 shows the morbidity maps for males. Some morbidity maps
reveal a mixed pattern with what may look like a few clusters.
Preliminary visual inspection does not suggest that the distance from
the major industrial sources and from major roads in the study area
(Fig. 1) are major risk factors. Similar maps were obtained for female
SIR of the three cancers (not shown). Moran's I and Tango's C tests
were run separately on each of the morbidity indices (cancer type and
gender). Table 2 reveals that the spatial patterns of the SIR of lung
cancer and of bladder cancer in males are significantly non-random
whereas for NHL neither theMoran's I nor the Tango's C tests revealed
any significant spatial non-randomness. Following these results, we
did not formally consider NHL in males as a candidate cancer
indicator. Indeed, the Bayesian hierarchical regressionmodel suggests
an insignificant relation between NHL and the environmental risk
factors. Regarding female morbidity, only for bladder cancer the
Tango's test revealed significant non-randomness. For NHL in females
the result is marginal, however considering Bonferroni's adjustment
for multiple testing when testing for significant associations without
pre-established hypotheses (Perneger, 1998), this indicator can also
be disregarded. This was supported by the results of the Bayesian
regression model.

3.2. Risk metrics

Fig. 3 depicts the spatial patterns of mean SO2 concentrations in the
years 1996–2002. Mean SO2 concentrations have significantly declined
from 1996 to 2002, mainly due to the gradual shift towards using very
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Table 2
P-values of the testing for spatial non-randomness. P-values below 0.05 are assumed
statistically significant and imply non-random pattern.

Risk factor Cancer type Moran's I Tango's C

SIR Bladder Male 0.005 0.005
Female 0.2 0.03

Lung Male 0.001 0.001
Female 0.3 0.3

NHL Male 0.2 0.2
Female 0.3 0.06

SO2 0.001 0.001
PM10 0.001 0.001
SES 0.001 0.001
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low sulfur content fuels over the years. A normalized concentrationmap
(Fig. 4) was produced by the following transformation

cnorm =
c−clow

chigh−clow
ð4Þ
Fig. 3. Spatial patterns of annual mean SO2 concentrations for the years 1996–2002, and
produced by an optimal spatial mappingmethod (Yuval et al., 2005). The decline in the conce
of the study area) and from the continuous decrease of sulfur content in fuels.
with clow and chigh the minimum and maximum observed concentra-
tions. The spatial pattern of the normalized concentrations is fairly
constant and is characterized by elevated concentrations downwind
(to the southeast) from the refineries and the petrochemical complex.
Overall, there is a good correlation among themaps (Table 3) with the
exception of the 1998 map that shows distinct low concentrations at
downwind locations. It seems, therefore, that the relative spatial
pattern of mean SO2 concentrations in HBA has been relatively
consistent over the years. This suggests that the average 1996–2002
SO2 map (the lower right plate in Fig. 4) can be used as a chronic
population exposure metric for SO2 and for pollutants co-emitted
with SO2 in earlier years, i.e. during and before the latency period. This
map is used therefore as the underlying layer of the risk map.

Similarly, the spatial patterns of the relative annual mean PM10

levels in HBA in the years 2002–2004, and of the 3 years average,
show persistence and resemble each other in a general sense
(Fig. 5). Indeed, Table 4 reveals a good correlation between the
PM10 maps, suggesting that the spatial pattern of mean PM10

concentrations is preserved over the years. This result is assumed to
of the average of the whole period (quintiles, range 1.8–14.7 μg/m3). The maps were
ntrations results from the shutdown of the Nesher cement factory (located at the center
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Fig. 4. Spatial patterns of normalized annual mean SO2 levels for the years 1996–2002, and of the average of the whole period (quintiles, range 0–1). Each map was normalized
relative to its own range of values.

4435O. Eitan et al. / Science of the Total Environment 408 (2010) 4429–4439
hold also for previous years but due to lack of data from earlier years
could not be verified. Hence, we use the relative mean PM10

concentration map (the lower right plate in Fig. 5) as the underlying
layer of the risk map from long-term exposure to PM10 in HBA. It
should be noted that accounting for grid-point mean concentrations
Table 3
Pearson correlation coefficients between the yearly mean SO2 maps.

1996 1997 1998 1999 2000 2001 2002 1996–2002

1996 1
1997 0.65 1
1998 0.73 0.6 1
1999 0.66 0.54 0.29 1
2000 0.36 0.5 0.08 0.89 1
2001 0.56 0.55 0.09 0.83 0.81 1
2002 0.69 0.49 0.27 0.54 0.36 0.76 1
1996–2002 0.75 0.74 0.43 0.95 0.86 0.89 0.68 1
is practically equivalent to using the accumulated potential chronic
exposure,

Pc =
1
T
∫
T

0

c tð Þdt: ð5Þ

Figs. 4 and 5 were produced on an identical grid thus enabling a
quantitative comparison between them. The correlation between
these maps is relatively low (−0.16), suggesting that the sources of
these pollutants, the processes governing their dispersion, or both are
disparate. This corroborates the emissions inventory reports for HBA,
which specify PM10 emissions from multiple sources whereas SO2 is
mostly emitted by the heavy industry. Thus, the lower right plates in
Figs. 4 and 5 can be viewed as two independent spatially distributed
risk factors that represent chronic inhalation exposures to distinct
sources and/or pollutants.

Ward-based risk metrics were produced by transforming the full
grid risk maps into ward-based risk maps using (due to lack of any

image of Fig.�4


Fig. 5. Spatial patterns of normalized annual mean PM10 concentrations for the years 2002–2004, and of the whole period average (quintiles, range 0–1). Observations ranged
between 28.7 and 41.2 μg/m3. Each map was normalized relative to its own range of values.
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other information) a homogeneous (=1) averaging factor (Fig. 6).
Namely, within each ward the risk from the environmental stressor
was obtained by assigning the areal average exposure to the ward
centroid rather than by weighting according to intra-ward population
density variation. Tests for non-randomness of the spatial distribution
of the ward-based risk metrics show that their spatial patterns in the
study area are clearly non-random (Table 2). This result is not
surprising since the pollutant sources (locations, intensities, etc.) and
the physicochemical processes that govern their dispersion (meteo-
rology, topography) are spatially non-random. Likewise, the spatial
pattern of the ward-based SES rankings is also not random (Table 2),
supporting the notion that it may represent a possible confounder.

3.3. Association between spatial patterns of cancer and risk indices

Table 5 depicts the results obtained by the Bayesian regression
models when using the complete database. The disease-specific
models that accounted for the between-area variation of the SES
ranking as a sole risk factor served as the benchmark against which all
the other modes were compared. Only for lung cancer in males, a
more complex model (accounting for exposure to PM10) performs
better (i.e. has a lower DIC) than the benchmark model. In fact, all the
models that accounted for both SES and SO2 as risk factors had higher
DICs than those of the corresponding benchmarkmodels. Hence, none
of the three cancers studied seem related to long-term environmental
exposures to SO2 or its co-emitted pollutants in HBA. Moreover,
Table 4
Pearson correlation coefficients between the yearly mean PM10 maps.

2002 2003 2004 2002–2004

2002 1
2003 0.91 1
2004 0.16 0.42 1
2002–2004 0.87 0.95 0.62 1
accounting for PM10, SO2 and SES as risk factors was not superior to
the models that included only PM10 and SES as risk factors. Therefore,
Table 5 reveals that only incidence rates of lung cancer in males may
be related to long-term exposure to ambient concentrations of PM10,
whereas models that accounted for other environmental exposures as
risk factors were not supported by the data.

Applying the Moran's I and Tango's Cmethods for assessing spatial
randomness, the residual RR, Eq. (3), was found to be spatially auto-
correlated, i.e. it shows spatially structured overdispersion with
respect to the homogeneous Poissonmodel. This result was consistent
for all the models. The spatial non-randomness of the residual RR
suggests the presence of additional spatially varying unaccounted for
risk factors. Similarly, the ratio of the spatially correlated to the total
variability of the random effects (Frac.Spatial in Table 5) reveals that
the marginal between-area variance of the spatial component of the
log residual RR is larger than the variance of the unstructured
heterogeneity. For example, this ratio for bladder cancer in bothmales
and females is about 1 irrespectively of the model, supporting the
notion that there might be spatially structured unaccounted for risk
factors that may be associated with bladder cancer. Failure to account
for the excess of zeros in the health data may bring on overdispersion
in simple homogeneous Poisson models (Ugarte et al., 2006). It is
therefore essential to assess to what extent the extra Poisson
variability is due to the excess of zeros.

To evaluate the impact of the zeros in the database we ran all the
models again using the reduced datasets. Results of these models are
reported in Table 6. In agreement with the results presented in
Table 5, the RR associated with the SES ranking for lung cancer in
males is robust and b1. Namely, increased lung cancer incidence is
seen in the more deprived populations. Furthermore, without
exception, the RR associated with the between-area SES variation
for all the models reported in Table 6 are larger than those reported in
Table 5. It is, however, impossible to compare the models that use the
complete vs. the reduced datasets based on their pertinent DICs.
Nonetheless, for lung cancer in males the model that accounted for
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Fig. 6. Spatial pattern of the ward-based risk from long-term exposure to (a) SO2 and
(b) PM10 ambient concentrations, and the contours of the normalized concentrations
from which they were derived.
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prolonged exposure to PM10 as a risk factor obtained the lowest DIC
score in both Tables 5 and 6 whereas for bladder cancer in both
genders, accounting for environmental exposures as risk factors was
not supported by the data. Still, even for lung cancer in males, the
residual RR in the most supported (PM10-SES) model reveals a non-
random spatial structure and a larger contribution to the total
variability that comes from the spatially correlated heterogeneity
(Frac.Spatial changed only marginally from 0.62 to 0.59 in Tables 5
and 6, respectively). This suggests that theremay be a further spatially
Table 5
Results of the regression models with the socioeconomic status (SES) ranking and different c
non-randomness testing of the residual relative risk (RR), the deviance information criterion
of the random effects (Frac.Spatial) are also reported. The results were obtained based on d

Model RR.SES
(med., 95% CI)

RR.SO2

(med., 95% CI)

Lung cancer Male SES 0.21 (0.10–0.43)
SES+SO2 0.21 (0.10–0.44) 0.78 (0.26–2.37)
SES+PM10 0.26 (0.12–0.54)
SES+SO2+PM10 0.26 (0.12–0.56) 0.92 (0.31–2.72)

Bladder cancer Male SES 0.85 (0.46–1.56)
SES+SO2 0.86 (0.40–1.59) 1.02 (0.30–2.25)
SES+PM10 0.79 (0.40–1.53)
SES+SO2+PM10 0.80 (0.42–1.60) 0.92 (0.40–2.21)

Female SES 0.84 (0.26–2.80)
SES+SO2 0.88 (0.25–2.93) 1.15 (0.22–5.27)
SES+PM10 0.89 (0.26–3.12)
SES+SO2+PM10 0.95 (0.25–3.93) 1.36 (0.23–9.74)
structured risk factor in HBA. This conclusion holds for all the models
reported in Table 6.

4. Discussion

Due to data availability limitations, expected to be common in
many places worldwide, we had to tailor common methods for
studying associations between cancer incidence rates and long-term
exposure to air pollutants, and fit them to the data attributes available
to us. In particular, we lacked data on any individual-level risk factors,
such as work place, life style, smoking habits and genetic suscepti-
bility. Hence, we were forced to use a group-based risk metrics and
confounders within an ecological approach that requires relatively
low-level data but likely results in considerable exposure error. As
such, our results are inherently less conclusive than those of
longitudinal cohort studies, and cannot reveal etiological pathways.
Actually, at the individual-level, cancer causality may have no
relationship with existence or absence of an association at the
group level (Rothman and Greenland, 1998) although according to
Hill's criteria such associations if supported by other consistent
evidence can contribute to causal associations.

Tests for non-randomness (global clustering) were used to filter
out those cancers whose rates showed spatially random patterns, as
these cancers are very likely not associatedwith the coherent patterns
of the risk metrics. This step served to diminish the problem of
multiple testing, commonly encountered in such situations. Although
methods for assessing non-randomness and/or global clustering are
well established in epidemiology (Jacquez et al., 1996), we are
unaware of previous works that utilized these techniques as an
intermediate step before looking for associations between air
pollution and morbidity. Normally, such tools are used to test the
spatial autocorrelation of the residual random effects after applying
different levels of control for confounders (e.g. Jerrett et al., 2005).

The risks we tried to assess, i.e. that might have incited cancer in
HBA, reflect chronic exposures from before the mid 1980s. Thus, risk
metrics that are based on ambient concentrations from 2002 to 2004
(PM10) and 1996–2004 (SO2) could be irrelevant if the spatial
patterns of the environmental stressors which underlie the risk
have changed. Since a persistent spatial, rather than temporal, pattern
of the risk factor is required, the key question is whether locations that
are characterized by an increased risk remain so over long times. This
question is seldom addressed but is essential for relating extremely
prolonged exposures with health outcomes. In HBA, the spatial
distribution of ambient concentrations of both PM10 and SO2 seem to
be largely conserved in spite of the dramatic decrease in the sulfur
content of fuels.

As always, the quality and resolution of the data reflect on themodel
results. Whereas high resolution mapping of pollutant concentrations
ombinations of long-term exposure to PM10 and SO2 as risk factors. The p-values of the
(DIC), and the fraction of the spatially correlated heterogeneity from the total variance
ata from all the 143 wards (the complete database).

RR.PM10

(med., 95% CI)
DIC Residual RR

Moran's I
Residual RR
Tango's C

Frac. Spatial
(med., 95% CI)

500.3 0.001 0.001 0.73 (0.28–0.99)
500.9 0.001 0.001 0.71 (0.28–1.0)

2.07 (0.73–5.59) 498.2 0.001 0.001 0.62 (0.19–0.99)
2.01 (0.75–6.61) 500.2 0.001 0.001 0.66 (0.23–1.0)

483.7 0.001 0.001 1.0 (1.0–1.0)
487.8 0.001 0.001 1.0 (0.95–1.0)

0.82 (0.37–1.70) 484.7 0.001 0.001 1.0 (0.99–1.0)
0.87 (0.41–2.19) 487.9 0.001 0.001 1.0 (0.99–1.0)

294.1 0.001 0.001 1.0 (0.99–1.0)
296.5 0.001 0.001 1.0 (0.98–1.0)

1.07 (0.25–5.11) 295.7 0.001 0.001 1.0 (1.0–1.0)
1.38 (0.26–9.49) 297.8 0.001 0.001 1.0 (0.96–1.0)
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Table 6
Results of the regression models with the socioeconomic status (SES) ranking and different combinations of long-term exposure to PM10 and SO2 as risk factors. The p-values of the
non-randomness testing of the residual relative risk (RR), the deviance information criterion (DIC), and the fraction of the spatially correlated heterogeneity from the total variance
of the random effects (Frac.Spatial) are also reported. The results were obtained after wards with no reported cases and with expected rates b1, due to their small population, were
excluded (the reduced datasets). Hence, for each cancer type and gender a different list of wards was used (see Table 1).

Model RR.SES
(med., 95% CI)

RR.SO2

(med., 95% CI)
RR.PM10

(med., 95% CI)
DIC Residual RR

Moran's I
Residual RR
Tango's C

Frac. Spatial
(med., 95% CI)

Lung cancer Male SES 0.25 (0.14–0.48) 482.3 0.72 (0.20–1.0)
SES+SO2 0.25 (0.14–0.47) 0.83 (0.31–2.42) 483.0 0.70 (0.23–1.0)
SES+PM10 0.29 (0.16–0.54) 1.84 (0.69–4.89) 481.6 0.007 0.021 0.59 (0.15–0.99)
SES+SO2+PM10 0.29 (0.15–0.56) 1.01 (0.36–2.79) 1.85 (0.65–4.56) 483.0 0.56 (0.16–1.0)

Bladder cancer Male SES 0.92 (0.54–1.59) 477.5 0.79 (0.20–1.0)
SES+SO2 0.91 (0.52–1.53) 0.99 (0.86–1.13) 478.4 0.77 (0.20–1.0)
SES+PM10 0.90 (0.51–1.55) 0.90 (0.43–2.03) 478.7 0.007 0.017 0.80 (0.22–1.0)
SES+SO2+PM10 0.86 (0.49–1.54) 0.97 (0.84–1.11) 0.88 (0.39–2.17) 479.9 0.75 (0.18–1.0)

Female SES 1.17 (0.39–2.67) 250.5 0.78 (0.27–1.0)
SES+SO2 1.15 (0.36–2.77) 1.10 (0.69–1.67) 253.9 0.80 (0.35–1.0)
SES+PM10 1.09 (0.31–2.74) 1.54 (0.15–5.30) 253 0.003 0.023 0.73 (0.26–0.99)
SES+SO2+PM10 1.31 (0.37–3.28) 1.20 (0.74–2.04) 8.48 (0.09–43.8) 253.7 0.82 (0.39–1.0)
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can be produced, information on historic exposures at the individual or
the group levels are oftentimesmissing. Individual data points forwhich
particular risk factors are missing require standardization that could be
achieved only at an aggregate level. Hence, in comparison to
environmental data and the risk metrics derived from them, morbidity
data oftentimes have lower resolution and are available at theward or a
coarser spatial resolution. Specific to this work, although we lacked
individual risk factors and in spite of cancer being a rare disease, we
attempted to work at the highest spatial resolution supported by our
data. Clearly, the approach we followed can be employed at a coarser
spatial scale (e.g. a district level) to increase the number of cases
involved and reduce the effect of inter-ward mobility. However while
this should work towards reducing the uncertainty in exposure
estimation anddiminishing erratic SIRs, thus helpingwith the inference,
it oftentimes leads to loss of statistical power since large geographic
areas for which composite data are used tend to exhibit considerable
intra-regional variation (Elliott and Wartenberg, 2004; Nuckols et al.,
2004).

To first order approximation, aggregating dose–effect relationships
from the individual to the ward level in the case of linear dose–effect
relationships or for exponential dose–effect relationships with small RR
(i.e. in rare diseases) can be shown to lead to a ward level RR that
corresponds to the effect of exposure at the individual-level (Richardson
and Best, 2003). This conclusion holds also when the exposure is nearly
uniformover theward (i.e. for smallwards as found inHBA)orwhen the
group level variance of the exposure hardly varies.

As seen in Table 5, significant RR was obtained for the between-
area variation of the SES ranking only for lung cancer in males. The
RRb1 obtained in these cases represent the well known “inverse”
effect of the SES ranking on lung cancer, with low-SES ranking
contributing to elevated risk of lung cancer (Su et al., 2009). Normally,
this observation is attributed to an increased smoking prevalence in
low-SES populations. Since smoking is known to be associated with a
number of diseases, the spatial distribution of lung cancer incidence
rates has been used as a risk factor that proxies smoking (Held et al.,
2005). Likewise, we utilized the spatial distribution of lung cancer
rates in males (LM) as a proxy of risk from smoking when assessing
the RR of the environmental stressors for bladder cancer in males
(DIC: 481.6, RR.SES: 0.97, RR.LM: 1.08, RR.PM10: 0.76, RR.SO2: 0.91).
The improved model results (i.e. its lower DIC compared to Table 5)
suggest that using the aggregated lung cancer data as a covariate for
the spatial distribution of bladder cancer in males was supported by
the data. Since both the SES ranking and the lung cancer rates were
considered in this model, the SES ranking seems to account only
partially for the impact of smoking on cancer rates. This has clear
implications on the calculated RR of environmental stressors when
lung cancer is studied.
The mean RR of long-term exposure to PM10 for lung cancer in
males is 1.147 (95% CI: 0.943–1.382, obtained after back-transforming
the normalized figure appearing in Table 5 to physical units, since
using normalized variables improved the models' convergence
dramatically). Following the same procedure for the RR.PM10 reported
in Table 6, the (back transformed)mean RR associatedwith long-term
exposure to PM10 for lung cancer in males decreased somewhat to
1.12 (95% CI: 0.93–1.35). This result implies that enduring exposure to
a 1 μg/m3 increase of PM10 average concentrations is expected to
increase the incidence of lung cancer in males by 12%. It therefore
seems that long-term exposure in HBA to PM10 at even sub-
substandard levels may contribute to a higher risk of lung cancer in
males. This result is much higher than the RR reported previously for
mortality from lung cancer. For example, Jerrett et al. (2005) found
that the risk of mortality from lung cancer was significantly higher
among people who were exposed to a 10 μg/m3 increase in PM2.5 (RR,
1.60, 95% CI, 1.09–2.33) and that after accounting for 44 individual
covariates the RR decreased to 1.44 (95% CI, 0.98–2.11) and then
hardly changed when accounting for other social factors (RR, 1.43,
95% CI, 0.96–2.13). Similarly, Pope et al. (2002) found that the risk of
mortality from lung cancer was higher among those who were
exposed to a 10 μg/m3 increase in PM2.5 (RR, 1.14, 95% CI, 1.04–1.23)
and that the relative risk associated with exposure to PM10 was higher
by about 10%. The latter figure is about 10 fold lower than the RR
reported here. Whereas lower RR of mortality from lung cancer than
of lung cancer incidence have been reported (Reeves et al., 2007), the
marginal (~3%) difference, probably reflecting the poor survival with
this cancer, does not explain the large RR obtained in this study.

The relative risk associated with long-term exposure to PM10 was
found to be non-significant in all the models (Tables 5 and 6) at the
α=0.05 level. However, this significance level is often argued to be too
stringent in such cases. As an alternative, Rothman and Greenland's
(1998) sufficient component causes theory or other approaches (e.g. the
precautionary principle) are advocated. Our findings reveal that lung
cancer incidence inmales is associatedwith extended exposure to PM10

and that the latter is a major risk factor for the former, with attributed
risk of 10.7%. However, these findings, although consistent, do not
represent causation relationships, which must be assessed at the
individual-level and are normally multi-factorial.

5. Conclusions

Based on persistent relative spatial patterns, chronic exposure to
ambient PM10 concentrations appears to be associatedwith lung cancer
incidence rates inmales inHBA.Global clustering testswereused topre-
filter out the cancers that showed random spatial distribution, thus
diminishing the problem of multiple testing. Themean RRwas found to
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be an order of magnitude larger than previously reported in relation to
mortality from lung cancer. This result was obtained even when the
small-populated wards, in which no cases were expected irrespectively
of the cancer risk, were excluded. The missing individual-level risk
factors, the relatively low-level data available to control for confounders,
and the finding that theward-based SES ranking accounts only partially
for the impact of smoking prevalence may explain the high RR.PM10

observed. Indeed, the relatively high spatial structure in the residual RR
suggests the presence of additional unaccounted for spatially correlated
risk factors.
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