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A strategy for global sensitivity analysis of a multi-parameter ecological model was developed and used
for the hydrodynamic-ecological model (DYRESMeCAEDYM, DYnamic REservoir Simulation Model-
Computational Aquatic Ecosystem Dynamics Model) applied to Lake Kinneret (Israel). Two different
methods of sensitivity analysis, RPART (Recursive Partitioning And Regression Trees) and GLM (General
Linear Model) were applied in order to screen a subset of significant parameters. All the parameters
which were found significant by at least one of these methods were entered as input to a GBM
(Generalized Boosted Modeling) analysis in order to provide a quantitative measure of the sensitivity of
the model variables to these parameters. Although the GBM is a general and powerful machine learning
algorithm, it has substantial computational costs in both storage requirements and CPU time. Employing
the screening stage reduces this cost. The results of the analysis highlighted the role of particulate
organic material in the lake ecosystem and its impact on the over all lake nutrient budget. The GBM
analysis established, for example, that parameters such as particulate organic material diameter and
density were particularly important to the model outcomes. The results were further explored by
lumping together output variables that are associated with sub-components of the ecosystem. The
variable lumping approach suggested that the phytoplankton group is most sensitive to parameters
associated with the dominant phytoplankton group, dinoflagellates, and with nanoplankton (Chlor-
ophyta), supporting the view of Lake Kinneret as a bottomeup system. The study demonstrates the
effectiveness of such procedures for extracting useful information for model calibration and guiding
further data collection.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Computer models of ecosystems are increasingly used in order
to predict possible impacts of policy measures prior to their
implementation and to achieve a better understanding of these
ecosystems (Ford, 1999). Success of ecosystem models is generally
examined through comparisons to time-series of field data.
However, when such comparisons are conducted, model predic-
tions do not always match the observed data. The discrepancies can
be attributed to various sources of error, such as estimation error of
the initial conditions, sampling errors in the field data and errors in
the model equations and parameters (Loehle, 1997). The consider-
able complexity of these models often requires the inclusion of
a large number of parameters, many of whose values are uncertain.
: þ972 4 6724627.
k).

All rights reserved.
Uncertainty in parameter values is attributed to the complexity
of natural ecosystems and to the measures by which the parame-
ters are obtained. Parameter values can be obtained from empirical
observations or experiments, where the degree of uncertainty
around the estimated value can be assessed and even reduced in
most cases (Fieberg and Jenkins, 2005). If observations or experi-
ments are not available, parameters can be derived from expert
opinion or other models, yet suchmeans are typically characterized
by large uncertainty (Ray and Burgman, 2006). Moreover, models
have various sensitivities to the different parameters. A parameter
that the model is sensitive to is one that minor changes in its value
would result in major changes in model output or inference. When
high uncertainty in the value of a parameter coincides with high
sensitivity of the model to that parameter, the reliability of model
predictions may be very low (Bar Massada and Carmel, 2008).

In order to reduce the uncertainty associated with parameter
values, considerable effort must typically be invested by the
modeler. A prioritized list of influential parameters may be
compiled. Such a list can be used to determine the parameters in

mailto:vardit@oranim.ac.il
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2010.06.010
http://dx.doi.org/10.1016/j.envsoft.2010.06.010
http://dx.doi.org/10.1016/j.envsoft.2010.06.010


V. Makler-Pick et al. / Environmental Modelling & Software 26 (2011) 124e134 125
which the reduction of uncertainty would result in the greatest
increase in model accuracy and thus help prescribe resource allo-
cation into further research (Thornton et al., 1979).

Sensitivity analysis (SA) may be used to qualitatively or quan-
titatively apportion the variation of the model outputs to different
sources of variation in model components such as parameters, sub-
models and forcing data (Brugnach, 2005; Frey et al., 2004; Saltelli
et al., 2000, 2008; Helton et al., 2006). Although SA is an optional
element within the modeling process (Jorgensen, 1994), several
modeling guidelines such as the EPA guidance document (2003) or
the European Commission Impact assessment guidelines (2005)
prescribe sensitivity analysis as a tool to ensure the modeling
quality. SA is therefore considered an important stage in develop-
ment of ecological models (Ravalico et al., 2005; Saltelli et al., 2000;
de Young et al., 2004). In addition, SA can also have ecological
importance by identifying the governing parameters and processes
in a certain ecological system or even to improve model formula-
tions (Thornton et al., 1979; Cariboni et al., 2007). For example,
Cossarini and Solidoro (2008) found that the most relevant
parameters in the trophdynamic model of the Gulf of Trieste
(Northern Adriatic Sea, Italy) are those related to the growth
formulation of the phytoplankton group, the decay rate of partic-
ulate organic phosphorus and the mortality rate of bacteria.
Cariboni et al. (2007) applied a SA to a pelagic fish population
model, revealing that the total order sensitivity index for larvaewas
ten times more than the total order of sensitivity index estimated
for adult fish. These results indicate that from the fishing regulatory
point of view the main effort has to be put into developing strategy
for protecting young individuals.

Sensitivity analysis of model parameters is carried out by
changing them and observing the corresponding response in the
output variables. The change in the parameters is chosen on the
basis of our knowledge of their acceptable ranges. In local SA,
parameter values are changed one at a time, while fixing all other
parameter values (Bar Massada and Carmel, 2008). Global SA is
a group of techniques that alter a subset or all the parameters
simultaneously in a given model simulation (Helton et al., 2006;
Helton and Davis, 2003; Fieberg and Jenkins, 2005; Ginot et al.,
2006; Chu et al., 2007; Marino et al., 2008). Global SA should
probably be preferred in most situations, since (1) it accounts for
the effects of interactions between different parameters, and (2) as
ecological models are rarely linear, global SA does not assume
a linear relationship between the parameters and state variables
(Saltelli et al., 2000; Cariboni et al., 2007). Moreover, one may be
interested in the relative impact of a group of parameters, a sub-
model or a process, which local SA is incapable of addressing.

A known shortcoming of global SA is the heavy computational
demands (Hamby, 1994; Ascough et al., 2005; Moore and Ray,
1999). These become particularly limiting in models with tens or
hundreds of parameters. Such complex models are ubiquitous in
ecology, and it is not uncommon to find ecological models with 200
parameters or more. In such models, a single simulation run may
last hours, even on powerful computers, and the number of simu-
lations required for a significant global SA may be prohibitively
large. SA of such models becomes an intricate and complex task
which needs to be well thought out. Furthermore, sensitivity
analysis outputs do not always provide the modeler with infor-
mation on the effect of small changes (e.g. when the parameter is
changed within its allowable domain) or how exactly several
parameters interact with each other to effect a certain output
variable.

Various criteria should therefore be considered when selecting
an appropriate SA method (Ravalico et al., 2005; Ascough et al.,
2005). The key criteria are: (1) the computational cost associated
with an extensive SA (Hamby, 1994; Ascough et al., 2005; Moore
and Ray, 1999), (2) the ability of the method to account for inter-
actions between parameters, (3) the ability of the method to
account for non-linearities and non-monotonicity often present in
ecological models, (4) the input data required for the analysis, for
example in many cases knowledge of parameter probability
distributions is required but this knowledge is not always available,
and (5) the ability to understand and use the output of the SA.

In this paper, a new global SA approach, applicable to multi-
parameter models, was developed in order to satisfy the above-
mentioned criteria. The approach combines several analysis
methods. In the first step, two separate and independent analyses
methods were performed: (1) based on general linear models
(GLM) with random effects and with correction for multiple
comparisons (i.e. a least squares method for fitting models that
involves continuous and discrete variables); and (2) based on
recursive partitioning and regression trees (RPART) which builds
classification or regression models of a very general structure using
a two stage procedure; the resulting models can be represented as
binary trees. The outcomes of these two methods (i.e. the most
sensitive parameters selected based on these two methods) were
combined to generate a subset of parameters (for each output
variable) to which the model was most sensitive. In the second step
a more intricate quantitative method, a generalized boosted
regression model (GBM, Friedman, 2001, 2002), was applied to the
subset of parameters defined in the first stage. The GBM is
a general, automated, data-adaptive modeling algorithm that can
estimate the non-linear relationship between a variable of interest
and a large number of covariates. The impact of the selected
parameters on the output variables was estimated and the esti-
mates were used to construct, for each one of the output variables,
a final ordered list of parameters with a quantitative measure of the
sensitivity of the output variables to the parameters.

The method was applied to a complex hydrodynamic-ecological
model, DYnamic REservoir Simulation Model-Computational
Aquatic Ecosystem Dynamics Model, (DYRESMeCAEDYM and
DYCD hereafter) used to study Lake Kinneret (Israel). In previously
studies of DYCD performance, the seasonal variability and vertical
variation in temperature, oxygen, and nutrients were successfully
captured (Bruce et al., 2006; Gal et al., 2009), however, these
studies also highlighted that much uncertainty exists in predicting
nutrienteplanktonic interactions that are highly non-linear and are
less understood. Therefore the motivation of this analysis was
centered on gaining deeper insights into these non-linear interac-
tions. Although inference is not typically mentioned as a specific
goal of sensitivity analyses, in this particular application the SA
results were also used to derive insights into themodel and into the
properties of the actual ecosystem of Lake Kinneret.

2. Methods

2.1. DYRESMeCAEDYM (DYCD)

The 1-D hydrodynamic-ecological model, DYCD, developed at the Centre for
Water Research, University of Western Australia (Hamilton, 1999; Imberger and
Patterson, 1981) simulates the hydrodynamic and biogeochemical dynamics for
aquatic ecosystems. DYRESM uses a Lagrangian approach for simulation of the
hydrodynamics of aquatic ecosystems (Imberger and Patterson, 1981, 1989). Based
on inflows, withdrawals, and meteorological conditions, it calculates the water level
and changes to water temperature, salinity and stratification dynamics over time.
The water column is represented by set of layers whose thickness ranges between
0.65m and 2m. DYRESM has been applied to lakes of varying types (Hamilton,1999;
Horn et al., 2001) including to Lake Kinneret (Gal et al., 2003).

CAEDYM dynamically couples with DYRESM to simulate nutrient cycling and
various plankton groups and is the focus of the present SA analysis. CAEDYM
consists of a series of partial differential equations to simulate time-varying
concentrations of biogeochemical variables accounting for processes such as
primary production, secondary production, nutrient cycling, oxygen dynamics and
sediment-water interactions (Hipsey and Hamilton, 2008). Various configurations of
the model have previously been validated in reservoirs, lakes (Romero et al., 2004;
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Trolle et al., 2009; Bruce et al., 2006; Burger et al., 2007), estuaries (Robson and
Hamilton, 2004) and the coastal ocean (Spillman et al., 2007, 2008) and were
used, for example, to predict the impact of nutrient loading on various components
in a lake ecosystem (Gal et al., 2009). A detailed description of the configuration,
differential equations and parameterizations as applied to Lake Kinneret CAEDYM is
given in Gal et al. (2009).

2.2. The study design

Out of a total of over 40 possible output variables, the current analysis focused
on 20 key biological and chemical output variables during four different seasons
(Table 1). Forcing time-series data (meteorology, inflows and outflows) from the
year 1997were used to drive the SA simulations. Model simulations were configured
to run from January 1997 for a period of one year, with a 1-h time-step and daily
output. Each output variable was calculated daily and averaged monthly over 12
months. To simplify the analysis, the 12 monthly values were divided into four
groups representing the four seasons, so that the mean of each season was
considered.

The SA was applied to 180 preselected parameters (Supplementary Table 3, the
list of model parameters included in the SA, can be downloaded from http://envgis.
technion.ac.il/Files/SA_Table_3.pdf). The parameters were selected based on their
role in the dynamic equations of the key chemical and biological output variables
and our experience with model calibration. Parameter values were assumed to be
uniformly distributed over the defined ranges (see Supplementary Table 3 online).
The simulated data for the SA, that is the sets of parameters used as input for the
experimental simulations, were generated using Latin Hypercube Sampling (LHS,
McKay et al., 1979; Helton and Davis, 2003). This is a popular choice for computer
simulation experiments and for global sensitivity analysis (Santner et al., 2003;
Helton and Davis, 2000, 2003). The LHS method was developed to help perform
global uncertainty and sensitivity analyses involving computationally demanding
models with large numbers of uncertain inputs and possibly large numbers of
outputs and is geared for simultaneous study of any number of parameters (input
factors). Specifically, let n be the number of experimental runs, and without loss of
generality, assume that the possible values of each parameter belong to the unit
interval [0,1]. The range of each parameter is divided into n non overlapping inter-
vals of equal length on the basis of equal probability. One value is selected at random
from each interval. The n values thus obtained for the first parameter are paired in
a random manner (equally likely combinations) with the n values of the second
parameter. These n pairs are combined in a randommanner with the n values of the
third parameter to form n triplets, and so on, until n 180-tuplets are formed. The
number of experimental runs was taken to be n ¼ 1300 as described below.

In this study only the results for the upper region (i.e. the 10 top meters of the
water column) are analyzed. The output can be summarized by the vector
Yi ¼ (Yi1,.Yi4)T where Yij is the output of the ith output variable, i ¼ 1,.,20, at
season j, j ¼ 1,.,4. Each one of the 20 output variables was analyzed separately.

The number of experimental runs was determined based on a General Linear
Model (GLM) with mixed (random and fixed) effects; each consisting of 180
parameters (input factors). Each of the 20 GLMs included: (1) the season as a fixed
effect; (2) 180 main fixed effects corresponding to the parameters; (3) 180 � 3
fixed interaction effects between each parameter and the season; (4) a random
effect corresponding to the specific experimental run; and (5) a four-dimensional
Table 1
A list of model output variables considered in the SA. Each variable includes 4 notations r
spring, summer, and autumn, respectively. For example, DINOF 1q stands for Dinoflagell

Output variable Variable name

y1ey4 DINOF: Dinoflagellates
y5ey8 CYANO: microcystis
y9ey12 DO: Dissolved oxygen
y13ey16 ZOOP2: Herbivorous zooplankton
y17ey20 ZOOP3: Micro zooplankton
y21e24 ZOOP1: Predatory zooplankton
y25ey28 NOUDUL: Aphanizomenon ovalisporum
y29ey32 FDIAT: A. granulate (diatoms)
y33ey36 Chlorophyta: Nanoplankton
y37ey40 PO4: Inorganic phosphorus
y41ey44 NO3: Nitrate
y45ey48 NH4: Ammonium
y49ey52 DIC: Dissolved inorganic carbon
y53ey56 DOCL: labile dissolved organic carbon
y57ey60 POCL: labile particulate organic carbon
y61ey64 POPL: labile particulate organic phosphoru
y65ey68 DOPL: labile dissolved organic phosphorus
y69ey72 PONL: labile particulate organic nitrogen
y73ey76 DONL: labile dissolved organic nitrogen
y77ey80 NITRF: Nitrification rate
random effect vector corresponding to the specific season at each specific experi-
mental run. The random terms of the model represent the departure of the model
from the assumed linear model. This requires estimation of 724 (4 � 180 þ 4)
regression coefficients and the variance matrix components that could include, at
most, 10 distinct parameters. Our design was based on a total of 1300 experimental
units, which is larger than the minimum required but is still feasible in terms of
CPU time.

2.3. Sensitivity analysis

Below is a review of the statistical methods used in the analysis, emphasizing
the advantages and disadvantages of each procedure.

2.3.1. The GLM with correction for multiple comparisons
GLM is a flexible generalization of least squared regression model. In the GLM

withmixed effects, the observed output variables are considered to be influenced by
two main sets of effects: fixed effects defining the expected values of the output
variables, and random effects defining the variances and covariances of the output
variables (Laird and Ware, 1982). Such models can accommodate correlated data
within the subject and heterogeneous variances. We fitted 20 GLM models, one for
each output variable, as described above in the Study Design. Specifically, each of the
20 models is defined as follows (Eq. (1))

Yi ¼ Xibþ Zdi þ ei i ¼ 1;.;1300 (1)

where

Xi ¼

2
664
1 1 0 0 x1i . x180i x1i . x180i 0 . 0 0 . 0
1 0 1 0 x1i . x180i 0 . 0 x1i . x180i 0 . 0
1 0 0 1 x1i . x180i 0 . 0 0 . 0 x1i . x180i
1 0 0 0 x1i . x180i 0 . 0 0 . 0 0 . 0

3
775

xki is the value of the k-th input factor (k ¼ 1,.,180) of simulation i after sub-
stracting the mean, Z ¼ (1,1,1,1)T; 3i ¼ (31i, 32i, 33i, 34i)T is a random vector assumed to
be independently distributed with zero mean; b is a 724-dimenstional vector of
unknown parameters corresponding to the columns of Xi, and di is a random effect
with a mean of zero. The distributions of ei and di are assumed to be independent. It
should be noted that Zdi þ ei represents the departure from the linear model Xib.

The analysis was performed using a restricted maximum likelihood method
with an unrestricted covariance matrix, namely, no specific structure is assumed
in estimating the covariance matrix for estimating Var(Yi) ¼ ZVar(di)ZT þ Var(ei)
since it fitted our data better than the other more specific covariance matrix
structures. The main advantages of this method are: (1) it provides a p-value for
each effect included in the model, which can be used to decide which parameters
significantly contribute to the model; (2) the interaction terms between season
and each of the 180 input variables are easily included and the results can be
interpreted; (3) the results of each model can be easily corrected for multiple
comparisons by using the well-known false discovery rate (FDR) method
(Benjamini and Hochberg, 1995).

The GLM along with the FDR analyses were performed using the SAS software.
The final list of the p-values can serve as a basis for selecting the best subset of
parameters. The main limitation of this model is the linearity assumption. This
assumption is not made in the following RPART analysis.
epresenting the four seasons where the suffixes 1q, 2q, 3q and 4q represent winter,
ates in winter, DINOF 2q stands for Dinoflagellates in spring, etc.

Units Notation

mgC L�1 DINOF 1qe4q
mgC L�1 CYANO 1qe4q
mgO L�1 DO 1qe4q
mgC L�1 ZOOP2 1qe4q
mgC L�1 ZOOP3 1qe4q
mgC L�1 ZOOP1 1qe4q
mgC L�1 NOUDUL 1qe4q
mgC L�1 FDIAT 1qe4q
mgC L�1 CHLOR 1qe4q
mgP L�1 PO4 1qe4q
mgN L�1 NO3 1qe4q
mgN L�1 NH4 1qe4q
mgC L�1 DIC 1qe4q
mgC L�1 DOCL 1qe4q
mgC L�1 POCL 1qe4q

s mgP L�1 POPL 1qe4q
mgP L�1 DOPL 1qe4q
mgN L�1 PONL 1qe4q
mgN L�1 DONL 1qe4q
mgN L�1 NITRF 1qe4q

http://envgis.technion.ac.il/Files/SA_Table_3.pdf
http://envgis.technion.ac.il/Files/SA_Table_3.pdf


V. Makler-Pick et al. / Environmental Modelling & Software 26 (2011) 124e134 127
2.3.2. Recursive partitioning and regression tree (RPART)
The RPART procedure grows a hierarchical tree that is useful for capturing

complicated non-linear relationships, in addition to the interactions among the
parameters, as is almost always the case in complex simulation models. RPART
implements the ideas of Classification and Regression Trees (Breiman et al., 1984):
a tree-basedmodeling exploratory technique that is particularly useful for screening
variables and summarizing large multivariate datasets. RPART is an iterative process
of splitting the data into partitions, and then splitting it up further on each of the
branches. Initially, all of the records are together in one box. The algorithm then
disaggregates the data using every possible binary split on every field. The algorithm
chooses the split that partitions the data into two parts such as to minimize the sum
of the squared deviations from the mean in the separate parts. This splitting or
partitioning is then applied to each of the new branches. The process continues until
each node reaches a user-specified minimum node size and becomes a terminal
node. If the sum of squared deviations from the mean of all simulations in a node is
zero, then that node is considered a terminal node even if it has not reached the
minimum size. The predicted value of the output variable for a particular node is the
sample average of the output variable consisting of records included in that node.

The parameters selected to be included in the final tree can be considered as the
subset of parameters that are important for the model. However, in contrast to the
GLM analysis of Section 2.3.1, it is not clear how to rank the parameters according to
their contribution, since two different trees can perform equally well. After building
a complete tree, possibly large or complex, we must decide howmuch of that model
to retain. This stage of pruning the tree is done by a cross-validation method. For
a comprehensive description of the RPART analysis the reader is referred to
Therneau and Atkinson (1997) and references therein. An example for the use of
RPARTmethod in sensitivity analysis of ecological modeling is given in Deygout et al.
(2009).

The RPARTanalysis was performed for each of the 20 output variables separately
and included all 180 parameters and the season effect. For each model, a 20-fold
cross validation analysis was performed. The analysis was performed by using the
RPART routines of R and is available at http://cran.r-project.org/web/packages/rpart/
index.html.

In the light of the advantages and disadvantages of the GLM and RPART tech-
niques, we believe that amore reliable picture can be provided by uniting the results
of these two models. That is, based on these two methods we constructed a subset
of parameters consisting of all the parameters included in at least one of the two
techniques. From theGLMswe collected all the parameters thatwere significant after
the FDR correction for multiple comparisons, at a significance level of 0.05. From
the RPARTanalysiswe included all the parameters used in the tree. This resulted in 20
subsets of parameters one for each output variable. Each subset was then used in
the analysis of generalized boosting regression models, as described below.

2.3.3. Generalized boosted regression model (GBM)
The “boosting” procedure is a way of combining the performances of many

“weak” classifiers to produce a powerful one. In boosting regression methods
(Friedman, 2001; 2002) a sequence of very simple trees are computed, where each
successive tree is built for residual prediction of the preceding tree. It can be shown
that such trees can eventually produce an excellent fit of the predictive values to the
observed values, even if the specific nature of the relationship between the outcome
variable and the predictor variables is non-linear in nature. Hence this method
represents a general and powerful machine learning algorithm. Specifically, given
a “training sample” our goal is to find a function F*(x) that maps the input vector x to
Y and minimizes the expected value of some pre-specified loss function. Boosting
approximates F*(x) by an additive expansion of the form

FðxÞ ¼
XM

m¼0
amhðx; amÞ (2)

where the functions h(x;a) are usually chosen to be simple functions of x with
parameters a ¼ (a1, a2,.). The reader is referred to Friedman (2002) for the possible
algorithms for finding such F(x). GBM analysis also provides the relative importance
or relative influence of each parameter. This measure is based on the empirical
improvement in the loss function (e.g. squared error loss) due to the split on the
specific parameter in a tree, averaged over all the trees generated by the boosting
algorithm. This score of relative influence serves as the key measure for our final
conclusion of the analysis, as elaborated below.

However, this flexible GBM analysis, in contrast to the GLM and RPART analyses,
has substantial computational costs, in both storage and CPU time. Hence, we
included in this analysis only the parameters already identified by the GLM or the
RPART analyses as being the most important.

The GBM method of Friedman (2001) was separately applied to each of the 20
output variables, using the GBM package of R available at http://cran.r-project.org/
web/packages/gbm/index.html. Each GBM analysis was based on the mean
squared loss function; ANOVA model with threeeway interactions; 10000 trees; 5-
fold cross validation; and half of the data used for training. Each list constructed in
the GBM analysis consisted of the selected parameters ordered according to their
relative influence on the particular output variable. The relative influence is a score
between 0 (no influence) to 100 (complete influence) and the sum of scores over all
selected parameters in each model equals 100.
2.3.4. Final scoring and ranking procedures
In order to combine the results of the 20 GBMs and provide a final list of the

most influencing parameters, we listed the ten most important parameters of each
output variable. These were then merged into groups according to their function-
ality in the model. For example x1ex5 form a group since they relate to “Maximum
potential growth rate of phytoplankton”. In total we had 47 functional groups.

Let Zjm be the relative influence of the m-th parameter that belongs to the j-th
functionality group, m ¼ 1,.,Mj j ¼ 1,.,47 where Mj is the number of selected
parameters in the functionality group j. Then, we define the sum and the mean
influence score of the functional group j by:

SISj ¼
XMj

m¼1

Zjm (3)

and

MISj ¼ 1
Mj

XMi

m¼1

Zjm (4)

respectively.
Ranking procedure: In addition, instead of using the actual value of the relative

influence Zjm, we ranked the 10 most important parameters of each output variable
from 1 (low influence) to 10 (high influence). If a parameter is not included in the top
10 parameters, in a specific model out of the 20 models, its rank is set to be 0 in the
specific model. Let Rij be the rank of parameter i in model j i ¼ 1,.,180, j ¼ 1,.,20.
Thus, the total rank of each parameter is defined as

TRi ¼
X20

j¼1
Rij (5)

After following the ranking procedure, 77 parameters (out of 180) had rank
greater than zero. We prefer using the sum of score rankings rather than the sum of
score values since the latter may be highly influenced by extreme score values. The
ranking procedure was also employed for ranking groups of variables, for example
the variables associated with phytoplankton or zooplankton.

3. Results

The analysis consisted of 1288 simulations (12 simulations were
excluded due to technical problems). The most notable difference
between the results obtained using the RPART and GLM analyses
was the higher number of parameters identified as important by
the RPART method. For example, y1ey4 (the output variable dino-
flagellates) had 27 parameters selected by RPART and 14 parame-
ters selected the GLM (including the season affect). Most of the
parameters that were selected by the GLM procedure were also
identified by the RPART (Supplementary Table 4, the results of the
GLM and RPART methods, can be downloaded from http://envgis.
technion.ac.il/Files/SA_Table_4.pdf). One of the advantages of the
GLM procedure is that it allows exploring the sensitivity to the
parameter in the different seasons. For example, the output vari-
ables: y1, y2, y3, and y4 are related to the results of the sensitivity
analysis of dinoflagellates in winter, spring summer and autumn,
respectively. The results indicate that dinoflagellates are sensitive
to some parameters throughout the whole year, such as the
parameter “Minimum internal N ratio for Peridinium” (x31), and
sensitive to other parameters only during certain seasons. For
example, the parameter “Nutrient dependentmigration velocity for
Peridinium” (x90) was selected by the GLM only in the autumn (data
not shown).

The GBM model was fitted using as input all the parameters
selected by RPART and the GLM procedures. The quantitative
measures of the GBM analysis for the highest ranked ten param-
eters for each one of the 20 output variables are shown in Fig. 1.
Parameters referring to the same attribute were merged under the
same name (see Section 2.3.4 for explanations) and therefore
some output variables have less then 10 parameters. We
employed three different approaches to explore the results. In the
first approach the model was considered as a whole (i.e. all the
output variables were considered). Unsurprisingly, seasonality
was found as an important factor for all biological and chemical
components. The mean GBM score of the sensitivity was 20 (out of

http://cran.r-project.org/web/packages/rpart/index.html
http://cran.r-project.org/web/packages/rpart/index.html
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Fig. 1. Quantitative measures of the GBM analysis. For clarity, only the highest ranked ten parameters for each one of the 20 output variables are shown. Red represents high score
values (maximum possible score value is 100) and blue indicates low score values. The term “Per” stands for the season. Parameters referring to the same attribute were presented
in the figure under the same name, for example, the parameter name “Pmax” stands for x1ex5 which are the parameters Maximum potential growth of the five phytoplankton groups
represented by Peridinium, Microcystis, Aphanizomenon ovalisporum, Chlorophyta and Aulacoseira granulate, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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maximum score of 100). In 80% of the output variables, seasonality
was ranked as one of the 10 most influential parameters. Sea-
sonality however is not a parameter in the model or the focus of
the analysis and therefore was not included in the remaining
analysis. Most of the output variables were also sensitive to two
additional parameters: particulate organic material (hereafter,
POM) diameter (POMda, x167) and POM density (POMde, x168). The
sum of influence scores (i.e. the sum of the GBM scores) and the
mean influence score are means to measure influence (Table 2).
A parameter may have a high total sum of influence scores with
a low mean influence score which means that a large number of
output variables were sensitive to that parameter at a relatively
low significance (for example, the parameter “Maximum internal
N to C ratio for Phytoplankton”, x36ex40). It is also possible that
a parameter will have a low sum of influence scores with a high
mean influence score value which means that a small number of
output variables are very sensitive to that parameter (for example
the parameters “Denitrification rate coefficient”, x173). As with the
scoring results, the results of the ranking procedure (Fig. 2)
Table 2
Integrated GBM results: sum of the influence scores (Eq. 3), number of occurrences and
ordered by decreasing sum of scores values. Parameters referring to the same attribute w
growth” represents parameters x63ex67 which are the temperature multiplier of the five

Parameter (name and number) Sum
score

Particulate organic material diameter (x167) 250.5
Half saturation for bacteria (x161) 159
Nitrification rate coefficient (x176) 108.4
Temperature multiplier for phytoplankton growth (x63ex67) 97
Denitrification rate coefficient (x173) 53
Messy feeding rate of Zooplankton (x93ex95) 43.9
Maximum internal N to C ratio for Phytoplankton (x36ex40) 43.8
Zooplankton internal phosphorus (x111ex113) 41.5
Phytoplankton respiration coefficient (x78ex82) 40.8
Minimum internal P to C ratio for Phytoplankton (x46ex50) 40.6
indicate the importance of the particulate organic material.
However the ranking procedure also demonstrates the influence
of other parameters such as parameters associated with bacteria,
for example the “Half saturation constant for bacteria” or the
“Respiration rate of bacteria”.

The second approach was to examine the sensitivity of a specific
output variable as opposed to using all the output variables as in
the previous approach. For example, the GBM scores of the ten
most significant parameters affecting the output variable nano-
plankton (Chlorophyta) were explored (Fig. 3A). Nanoplanktonwas
found to be sensitive to parameters such as “Respiration rate
coefficient” (x81) and “Minimum internal N ratio” (x34). A similar
analysis for the predatory zooplankton indicated that 80% of the
parameters to which this output variable is sensitive were directly
related to the zooplankton sub-model. The other parameters were
related to one of its prey types and to POM diameter (Fig. 3B).
Similarly, the output variable NO3 (Fig. 3C) was sensitive mainly to
parameters associated with the nitrogen cycle, such as “Nitrifica-
tion rate coefficient” (x176), “Denitrification rate coefficient” (x173)
mean influence score (Eq. 4)of the 10 most influencing parameters. Parameters are
ere merged (for example the parameter “Temperature multiplier for phytoplankton
phytoplankton groups).

of influence Number of
occurrences

Mean influence
score

18 13.92
10 15.9
5 21.68
6 16.17
2 26.5
6 7.32

8 11 3.99
2 20.75
5 8.16

8 10 4.07



Fig. 2. Sum of parameter ranks across all output variables.

Fig. 3. The GBM score (out of 100) of the highest ranked parameters for the output variable: (A) nanoplankton (Chlorophyta), (B) predatory copepod, and (C) NO3.
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and “Maximum mineralization of DONL to NH4” (x171). However
NO3 was also sensitive to indirect parameters such as the
“Minimum internal N ratio” and “Minimum internal P ratio” of
Chlorophyta” (x34 and x49, respectively). These three output vari-
ables: nanoplankton, predatory copepods, and NO3, although
related to different biological and chemical groups, were all very
sensitive to POM diameter (x167).

The third approach used to explore the results was to lump
together output variables associated with a specific ecosystem
component of interest and rank the integrated GBM results linked
with that group of variables. For example, lumping together all the
phytoplankton output variables into a single group verified that,
except for POM diameter, the parameters to which this group was
most sensitive were associated with dinoflagellates and nano-
plankton (e.g. respiration rate coefficient, nutrient uptake, light
saturation for maximum production and internal P to C ratio,
Fig. 4A). Focusing on nitrogen related output variables such as NO3,
NH4, PONL (labile particulate organic nitrogen), DONL (labile dis-
solved organic nitrogen) and nitrification rate, reveals that they
were sensitive mainly to bacteria and POM parameters and to
parameters related to processes such as nitrification, denitrification
and mineralization (Fig. 4B).

The GBM results also provided a means to examine in more
detail the relationship between the output variable and the
parameters to which it was sensitive. Namely, it is possible to
determine whether the variable is sensitive to the parameters over
the entire range of parameter values or to a more limited range. For
example, Fig. 5A is a marginal plots demonstrating the sensitivity of
the output variable dinoflagellates to the parameter “Light satura-
tion for maximum production” (x10) over the entire range of x10
(measured on a relative scale of 0e100). Dinoflagellates are
Fig. 4. Sum of parameter ranks for (A) the phytoplankton c
sensitive to x10 at relatively high parameter values (e.g. at scaled
values higher than 80). It is also sensitive to the parameter “Light
dependent migration velocity of dinoflagellates” (x88) more
uniformly across the parameter range (e.g. at scaled values higher
than 30). However, the magnitude of the sensitivity is higher to x10
than to x88 when x10 is at the upper portion of its range. The higher
degree of sensitivity to x10 at higher values demonstrates a value-
specific sensitivity to that parameter which is important for cali-
bration purposes.

The GBM results further allow exploring the interaction and
combined effects of two (or three) parameters. The interaction can
be examined through the use of two-way plots. The two parameters
described above, x10 and x88, are used as an example. The result
(Fig. 5B) indicates that the greatest impact (where the plot color is
cyan) is when the value of both parameters, x10 and x88, is relatively
high (e.g.>80). Through the use of these types of plots it is possible
to study the joint influence on the output variable dinoflagellates. It
is also possible to examine the same interaction separating
between the four seasons (Fig. 5C). It is evident from the example
that the interactions between the parameters and the impact on
the output variable are season-dependent with a larger effect
occurring during periods 2e4 (spring to autumn).

4. Discussion

In this study we implemented a new approach to conducting
a global sensitivity analysis for multi-parameter complex ecological
models. The computational cost associated with the method is
largely reduced since the analysis employs a “screening” stage
using a relatively fast method to identify a subset of sensitive
parameters that is subsequently used as input to the more intricate
omponent, and (B), Nitrogen related output variables.



Fig. 5. An example of the visual and detailed analysis of the GBM results. In this example we show the impact of two parameters, x10 (“Light saturation for maximum production”)
and x88 (“Light dependent migration velocity”) on the output variable Dinoflagellates. The parameters were scaled to the interval [0e100] where 0 is the lowest boundary and 100 is
the highest boundary of the interval and the effect was measured using a relative scale, 0e1. (A) Marginal plots of the parameters showing the effect of small changes in their values,
within the allowable domain, on the output variable. (B) A two-way plot of the combined effect of the two parameters on the output variable, Pink indicates low effect and the cyan
indicates higher effects, and, (C) Three-way plots of the combined effect of x10 and x88 on the output variable in winter (1) spring (2), summer (3), and autumn (4). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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and computationally intensive GBM method (criterion one of
Ravalico et al., 2005). The GBMmethod accounts for linear and non-
linear interactions that are common in complex ecological models.
Except for the need to define the allowable domain for each
parameter, the procedure for generating the simulated data (LHS)
assumes uniform probability distribution to all parameters and
therefore does not require any knowledge of the probability
distribution of the parameters as required in other commonly used
methods (Sobol, 1993; Morris, 1991). The outcome of the GBM
provides a quantitative measure of the sensitivity of the output
variables to the different parameters, as well as complementary
information such as the impact of small changes of a specific
parameter on a specific output variable, and how several parame-
ters interact with each other to manifest in changes to an output
variable.

Various techniques have been proposed to address SA. The
Morris method (Morris, 1991) produces sensitivity estimates to the
total effect due to a single parameter. Several simple linear regres-
sion analysis and correlation measures are also commonly used,
such as the Pearson correlation coefficient, the partial correlation
coefficient and standardized regression coefficient. For non-linear
but monotonic relationship, rank-basedmeasures can be used, such
as Spearman rank correlation coefficient. Fourier Amplitude
Sensitivity Analysis (FAST) (Cukier et al., 1978), Extended FAST
(Saltelli et al., 1999) and Sobol’method (Sobol, 1993) deal with non-
linear and non-monotonic trends and providemeasures of themain
effect of each parameter or group of parameters and higher order
effects. However, these methods cannot be applied with high
number of parameters, such as 180 in our case (Caraboni et al.,
2007).

Storlie and Helton (2008a) and Storlie and Helton (2008b)
compared between various multiple predictor smoothing
methods based on non-parametric regression techniques and
concluded that non-parametric regression procedures can yield
more informative SA compared to traditional parametric regression
models, given that the relationships between model inputs and
model outputs are non-linear. Storlie et al. (2009) provided an
overview of several modern non-parametric techniques. They also
compared between the models by simulation study consists of
2e10 parameters. In models like ours, non-parametric regression
cannot be applied due to the large number of parameters and
output variables.

Our method satisfies all the desired criteria of Ravalico et al.
(2005): it can handle 180 parameters; regression trees consider
interactions, non-linear effects and non-monotone effects; and the
output provides a direct measure of the relative importance of each
parameter.

Our approach was tested on the complex hydro-ecological
model DYCD, as applied to Lake Kinneret. The sensitivity analysis
for twenty output variables over four seasons was applied to 180
parameters in 1300 simulations. The outputs of the two analyses
methodswere similar; however the RPART yieldedmore significant
parameters than the GLM analysis (see Supplementary Table 4
online). Each sensitivity analysis method is typically based on
different assumptions regarding appropriate ways of measuring
sensitivity, and it is expected that they lead to different results. The
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GLM also provides means to examine differences in sensitivity
among the four seasons. The advantage of employing two different
analysis methods is that it ensures consideration of a larger number
of parameters and thereby lowers the chance of overlooking
parameters because of shortcomings of a particular method.

Different approaches can be adopted in order to explore and use
the quantitative measures provided by the GBM outcome. Selecting
a certain approach is dependent on the purpose of the calibration
(i.e. adjusting model parameters so that outputs best match
observed data) and the aim of the model. If the modeler is inter-
ested in a specific output (such as “nanoplankton” for example)
then the calibration effort should be concentrated on the parame-
ters towhich the specific output is sensitive (Fig. 3). If themodeler’s
interest is in the operation of the model as a whole, then the
integrated output of the GBM results should be considered as the
target for the calibration effort (Fig. 2). Calibration aimed to
improve model results for a large number of output variables (or
processes) will concentrate on parameters with high mean ranking
values given that they have a large number of occurrences, for
example the parameter “POM diameter” which has 18 out of 20
possible occurrences would be a good target in that case (Table 2).
Grouping the GBM results of several output variables that are
related to each other, for example, grouping all the output variables
related to zooplankton or phytoplankton, allows the modeler to
improve the calibration for a subset of output variables.

Studying the ecological implications of the SA output can
enhance our understanding of key ecosystem dynamics. Basic
factors driving the ecosystem such as sunlight, wind, mixing and
sediment oxygen demand are necessary to capture factors such as
lake temperature (stratification and de-stratification), dissolved
oxygen and light (photic zone) dynamics. In particular, many
processes, and the associatedmodel state variables in Lake Kinneret
are largely shaped by seasonal drivers (Serruya, 1978; Pollingher,
1981, 1986; Berman et al., 1995; Zohary, 2004; Gophen, 2005).
These factors have been accurately modeled by previous studies
using DYCD (Gal et al., 2009; Bruce et al., 2006) and provide the
necessary environmental settings on which the nutrient and
plankton dynamics are based. Thus, their related parameters were
excluded from the SA and the analysis was focused particularly on
gaining insights to key parameters associated with the non-linear
interactions between nutrients and planktonic components in the
surface layer. Accordingly, the results reflected the important role
that seasonality plays, as indicated by the factor “per”, which was
found to be the most significant for most output variables. While
there may be some interaction between the nutrients and plank-
tonic components and the temperature structure or oxygen
concentrations, these feedbacks were considered minor for the
purposes of demonstrating the new SA method.

The most important parameter, after seasonality, was the “POM
diameter” (Fig. 2). The high ranking for this parameter can be
explained by the fact that the POM diameter is a key parameter in
processes related to sedimentation of particulate nutrients, which
is a coremechanism used to balance the nutrient budget in the lake.
The parameters “POM diameter” and “POM density” are often used
as tuning parameters for controlling these elementary processes.
Ecologically, this means that a dominant system driver is the
balance of nutrients in the lake, which is highly regulated by
sedimentation processes. Surprisingly, the number of publications
related to POM composition (Stiller, 1977; Grossart et al., 1998;
Hadas et al., 2009) and particularly to POM sedimentation
(Zohary et al., 1998; Yacobi and Ostrovsky, 2008; Viner-Mozzini
et al., 2003; Gal et al., 2009) are fewer than expected considering
the importance of these process as indicated in this analysis. This
highlights the need to prioritize further study of sedimentation and
recycling rates of particulate detrital material, and exemplifies the
potential role of SA in identifying key factors and processes in the
model as well as in actual systems.

The importance of nutrient-related process was also confirmed
by the high ranking of parameters such as “Half saturation constant
for bacteria” (x161) and “Respiration rate of bacteria” (x159) that are
related to bacterial mineralization processes of organic material
which is also a key process for regulating nutrient recycling rates.
This is in accordance with recent publications, suggesting the
bacteria are a major biological agent for organic carbon cycling in
Lake Kinneret (Berman et al., 2004; Hart et al., 2000). Thus, apart
from seasonality, themost significant parameters for the ecosystem
are related to nutrients and the governing processes of sedimen-
tation and transformation of material between the particulate,
dissolve, organic and inorganic forms. Next in importance are
parameters related to the primary and secondary producers in the
ecosystem (mainly nanoplankton and predatory zooplankton).
According to the SA, these results indicate that the ecosystem can
be described as bottom-up controlled system (but see Gophen,
2003 for an opposing view).

The GBM results confirm that most of the output variables were
sensitive mainly to parameters associated with the specific output
i.e. parameters that are part of the equations used to calculate the
output variable in question. Hence these results serve as an
empirical validation of the methods. For example, the output
variable NH4 was most sensitive to the parameter “nitrification rate
coefficient”. Similarly, the output variable dinoflagellate was found
to be highly sensitive to the parameter “Light saturation value at
which production is maximal” (x10) and “Light dependent migra-
tion velocity” (x88). This is consistent with the literature describing
the dependence of phytoplankton on light and specifically the
aggregation dynamics of the Lake Kinneret dinoflagellate Peri-
dinium around the depth of optimal light intensity. Dinoflagellates
are characterized by daily vertical migration, including active
movement towards the layer with optimum light intensity (during
the light hours) or temperature (Prezelin and Sweeney, 1979;
Dubinsky and Berman, 1981; Sukenik, 2008).

However, some output variables were sensitive to parameters
that were not directly related to them, thereby demonstrating the
usefulness of the method for exploring the ecosytem. For example,
the state variable DOPL (labile dissolved organic phosphorous) was
very sensitive to the parameter “internal phosphorus ratio of
zooplankton” (IPZ, Fig.1). This is in linewith Bruce et al. (2006) who
pointed out that excretion of dissolved nutrients by zooplankton,
accounts for 3e46% and 5e58% of phytoplankton uptake of phos-
phorus and nitrogen, respectively. Additionally, Hambright et al.
(2007) showed that microzooplankton grazing and nutrient
mineralization are driving forces affecting bacteria and phyto-
plankton dynamics, playing important roles in carbon and nutrient
transfer to upper trophic levels. Our results therefore suggest that
future effort should be focused on the interactions between
internal N and P of zooplankton and mineralization of the organic
matter in Lake Kinneret.

Interestingly, exploring SA results in the context of the different
biological groups (e.g. phytoplankton group or zooplankton group)
revealed that while some parameters are common to most of the
output variables in the group, some output variables are sensitive
to exclusive parameters. For example, most of the phytoplankton
output variables are sensitive to the “Minimum internal P ratio” and
the “Respiration rate coefficient” although Aphanizomenon ovalis-
porum (output variable: NODUL), for example, is particularly
sensitive to “Temperature multiplier for growth”. Some studies
have linked Lake Kinneret water temperature and A.ovalisporum
blooms, suggesting an actual pathway for the importance of
temperature related parameters and their effect on A.ovalisporum
biomass. Pollingher et al. (1998) reported unusually high water
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temperatures and low wind inputs observed in the lake prior to,
and during, the first appearance of A.ovalisporum bloom period in
Lake Kinneret in 1994, and the onset of stormy conditions, fall in
water temperatures and phosphorus limitation as the lead to the
demise of the bloom (Hambright et al., 2001).

The GBM results can provide information on the sensitivity of
each output variable to each parameter as it changes within its
acceptable domain. This information can be used to reduce cali-
bration effort. Studying two-way and three-way interactions
provides even deeper insight into linear and non-linear interac-
tions between different parameters and has implications for future
research. For example, exploring the mutual impact of two
parameters such as “light saturation for maximum production” and
“Light dependent migration velocity” on dinoflagellates demon-
strate that both values have to be high enough in order to have an
influence on the dinoflagellate output variable (Fig. 5).

While the outcome of the SA can be useful for improving model
calibration, the possibility of achieving different results if the
simulation period was longer should be considered. The reason for
that is the time lag required for some of the output variables to
stabilize as some models even require an acceleration (spin-up)
period to stabilize the model, or the possible difference between
the short- and long-term results. We did not explore this issue, and
further analysis is required to explore the possible impact of long-
term simulations on the results of SA.

The new sensitivity analysis method implemented in this study
has allowed us to single out and rank the parameters to which the
model is most sensitive, thereby providing a method to prioritize
our research efforts in order to improve parameter estimation for
the model. Furthermore, the sensitivity analysis results provided
a unique option to deepen and extend our understanding of the
importance of functional interrelations within the ecosystem.
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