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Abstract
Aim:	Plant	species	regenerate	after	fire	either	through	vegetative	growth	(i.e.,	obli-
gate	 resprouters)	 or	 seed	 germination	 (i.e.,	 obligate	 seeders),	 with	 some	 species	
adopting	both	strategies	 (i.e.,	 facultative	seeders).	Fire	season	can	have	 important	
consequences	for	the	relative	abundance	of	plant	species	adopting	these	regenera-
tion	strategies.	The	present	study	aimed	to	test	for	differential	effects	of	fire	season	
on	perennial	plant	community	composition.
Location:	Eastern	Mediterranean	woodland	in	the	Judea	Mountains,	Israel.
Methods:	We	conducted,	for	the	first	time,	a	large-	scale	field	experiment,	involving	
prescribed	spring	and	autumn	burns	in	a	typical	eastern	Mediterranean	woodland.	
We	sampled	the	perennial	plant	community	before	and	after	the	burns,	quantifying	
temporal	changes	in	community	composition	caused	by	seasonal	fires.
Results:	Although	fire	intensity	and	severity	were	consistent	between	the	two	seasonal	
fires,	plant	community	composition	differed	between	areas	subjected	to	spring	or	autumn	
burns.	The	abundances	of	all	common	species,	Pistacia lenticus	(obligate	resprouter),	Cistus 
spp.	(obligate	seeders)	and	Teucrium divaricatum	(facultative	seeder),	were	all	reduced	by	
both	fires.	Yet,	their	dominance	in	the	post-	fire	perennial	plant	community	was	retained.	
Differential	fire	season	effects	were	detected	only	among	obligate	seeders,	which	expe-
rienced	a	stronger	reduction	in	abundance	after	spring	than	after	autumn	burns.
Conclusions:	Differential	fire	season	effects	on	the	perennial	plant	community	re-
sulted	from	phenological	rather	than	fire	intensity/severity	effects.	Such	changes	in	
community	composition	may	have	 important	 implications	for	plant	community	dy-
namics,	because	they	affect	the	circle	of	“fire	event–plant	regeneration–fire	reoccur-
rence”,	determining	the	probability	and	intensity	of	future	fires.	Furthermore,	even	
though	the	eastern	mediterranean	ecosystem	is	considered	highly	resilient	to	distur-
bances,	increased	spatio-	temporal	variation	in	fire	season,	may	result	in	a	new	vege-
tation	mosaic,	differing	from	the	contemporary	one,	i.e.,	an	alternative	stable	state.

K E Y W O R D S

community	composition,	facultative	seeders,	fire	disturbance,	obligate	resprouters,	obligate	
seeders,	plant	life	form,	plant	regeneration	strategy

www.wileyonlinelibrary.com/journal/avsc
http://orcid.org/0000-0003-1276-4350
mailto:anatts@post.bgu.ac.il
mailto:oferovad@bgu.ac.il


2  |    
Applied Vegetation Science

TSAFRIR eT Al.

1  | INTRODUC TION

Plant	community	dynamics	is	affected	by	the	interplay	between	en-
vironmental	 disturbances,	 species	 traits	 and	 life-	history	 trade-	offs	
(Keeley	 &	 Fotheringham,	 2000).	 Disturbances	 introduce	 a	 major	
source	of	variation	in	community	dynamics	(Sousa,	1984)	due	to	al-
teration	in	the	physical	environment	and	essential	resources	(Pickett	
&	White,	1985;	Tilman,	Kilham,	&	Kilham,	1982).	Furthermore,	distur-
bances	including	fire	can	cause	plant	communities	to	shift	from	one	
stable	state	to	an	alternative	state	(Beisner,	Haydon,	&	Cuddington,	
2003;	Mutch,	1970;	Odion,	Moritz,	&	DellaSala,	2010;	Pausas,	Keeley,	
&	Schwilk,	2017),	while	influencing	the	occurrence,	intensity	and	be-
haviour	of	 future	 fires	 (Cumming,	2001;	Dantas,	Hirota,	Oliveira,	&	
Pausas,	2016;	Hargrove,	Gardner,	Turner,	Romme,	&	Despain,	2000;	
Hoffmann	 et	al.,	 2012;	 Ormeño	 et	al.,	 2009;	 Pausas	 et	al.,	 2017).	
Hence,	the	increase	in	fire	frequency	associated	with	anthropogenic	
effects,	combined	with	increasing	temperatures	and	aridity	in	some	
parts	of	the	world,	all	highlight	the	need	for	extensive	research	explor-
ing	the	effects	of	fire	on	vegetation	dynamics	(Marlon	et	al.,	2009).

Perennial	plant	species	can	be	classified	by	their	post-	fire	regen-
eration	strategy:	(a)	obligate	resprouters,	(b)	obligate	seeders	and	(c)	
facultative	 seeders	 (Herrera,	 1992;	 Pausas	 &	 Keeley,	 2014;	 Verdú,	
2000).	 Perennial	 seeders	 and	 resprouters	 differ	 in	 their	 reproduc-
tive	 syndromes	 (Keeley,	 1986a).	 Fire	 triggers	 seed	 germination	 in	
obligate	 seeders	 	 (Chamorro,	 Luna,	 &	Moreno,	 2013;	 Herrero,	 San	
Martin,	&	Bravo,	2007),	while	resprouters	are	capable	of	withstand-
ing	fires	and	regenerate	vegetatively	after	fire	events	(Keeley,	2012;	
Paula,	Naulin,	Arce,	Galaz,	&	Pausas,	2016).	Facultative	seeders	can	
utilize	both	strategies,	post-	fire	resprouting	and	seedling	recruitment	
from	the	fire-	cued	dormant	seed	bank	(Keeley	&	Bond,	1997;	Keeley,	
Fotheringham,	&	Baer-	Keeley,	2006).	Recent	studies	have	illustrated	
that	 flammability	 is	 often	 linked	 to	 the	 plant	 regeneration	 strat-
egy	(Bond	&	Midgley,	1995;	Dantas	et	al.,	2016;	Pausas	et	al.,	2017;	
Saura-	Mas,	Paula,	Pausas,	&	Lloret,	2010),	with	seeders	being	more	
flammable	 than	 resprouters.	 Furthermore,	 traits	 which	 enhance	 or	
reduce	flammability	are	selected	for/against	through	the	process	of	
natural	 selection	 (Verdú,	 2000;	 Schwilk	 	&	Ackerly,	 2001;	Moreira,	
Castellanos,	&	Pausas,	2014)	.

The	 post-	fire	 regeneration	 of	 perennial	 plants	 adopting	 these	
different	strategies	can	be	affected	by	fire	timing,	as	it	may	largely	
influence	 fire	behaviour	 (Knapp,	Estes,	&	Skinner,	2009).	Although	
in	the	eastern	Mediterranean	region,	fires	usually	occur	during	the	
summer	(Levin	&	Saaroni,	1999),	the	intensity	and	behaviour	of	fires	
can	differ	between	spring	and	autumn.	Spring	fires	are	usually	less	
severe	than	autumn	fires	(in	total	burned	area)	because	they	occur	
shortly	after	the	wet	season,	when	the	water	capacity	of	both	the	
fuel	 (live	 and	 dead	 vegetation)	 and	 soil	 are	 relatively	 high	 (Neary,	
Klopatek,	 DeBano,	 &	 Ffolliott,	 1999).	 Thus,	 autumn	 fires	 are	 ex-
pected	 to	cause	a	 stronger	 reduction	 in	plant	abundance/biomass,	
and	 a	 larger	 change	 in	 soil	 characteristics.	 Increased	 soil	 tempera-
ture,	associated	with	autumn	fires,	may	lead	to	decreased	soil	water	
content,	along	with	an	increase	in	the	amount	of	nutrients	available	
to	the	local	biota	(Certini,	2005;	Neary	et	al.,	1999).

Fire	timing	can	also	have	important	 implications	for	the	regener-
ation	of	perennial	plants	owing	to	phenological	effects	(Knapp	et	al.,	
2009;	Ooi,	2010).	Obligate	resprouters	have	swollen	structures	at	the	
stem	base	(e.g.,	lignotubers	or	burls;	Canadell	&	Zedler,	1995;	James,	
1984;	Paula	et	al.,	2016;	Vesk	&	Westoby,	2004).	These	organs	function	
as	carbohydrate	and	nutrient	storage	sites,	supporting	plant	regrowth	
after	disturbance	(Moreira,	Tormo,	&	Pausas,	2012).	Cruz,	Perez,	and	
Moreno	(2003)	illustrated	that	the	concentration	of	carbohydrates	in	
the	storage	organ	of	Erica australis,	a	common	resprouter	in	the	west-
ern	Mediterranean	Basin,	was	lowest	in	early	summer,	remaining	rel-
atively	 low	until	 early	autumn.	Therefore,	 the	post-	fire	 regeneration	
of	obligate	resprouters	should	be	faster	during	spring	than	during	au-
tumn,	when	levels	of	stored	carbohydrates	are	higher.	Most	perennial	
seeders	in	the	Mediterranean	Basin	are	characterized	by	hard-	coated	
seeds	 (i.e.,	 physical	 dormancy;	 Brown	&	Van	 Staden,	 1997;	Moreira	
&	Pausas,	2012;	Chamorro	et	al.,	2013).	Hence,	in	areas	subjected	to	
spring	fires	the	physical	dormancy	of	these	seeds	is	broken	prior	to	the	
summer,	and	they	are	forced	to	survive	the	long	dry	summer	period	un-
protected	before	having	a	chance	to	germinate	(Chamorro	et	al.,	2017).	
All	 of	 the	 above	 suggests	 that	 the	 regeneration	of	 obligate	 seeders	
should	be	slower	after	spring	than	after	autumn	fires.

Field	 studies	 examining	 the	 consequences	 of	 fire	 season	 on	
plant	community	composition	have	been	conducted	mostly	in	North	
America	 (Knapp	et	al.,	2009).	 In	 recent	years,	 controlled	 fire	exper-
iments	 were	 also	 carried	 out	 in	 the	 western	 Mediterranean	 Basin	
(Céspedes,	Luna,	Pérez,	Urbieta,	&	Moreno,	2014;	Céspedes,	Torres,	
Luna,	Perez,	&	Moreno,	2012).	Unlike	the	western	Mediterranean	re-
gion,	 the	summer	 in	the	eastern	Mediterranean	Basin	 is	completely	
dry	 (Goldreich,	 2012).	 Moreover,	 this	 region	 has	 experienced	 in-
creased	 fire	 occurrences	 during	 the	 last	 two	 decades	 (Wittenberg	
&	Malkinson,	2009).	Although	plant	communities	characterizing	the	
Mediterranean	Basin	are	considered	largely	resilient	to	fires	(Peterson,	
Allen,	&	Holling,	1998),	severe	disturbances,	including	stand	replacing	
fires,	that	are	common	in	Mediterranean	woodlands	and	mixed	pine–
oak	forests,	often	bring	about	 long-	term	landscape	changes,	poten-
tially	leading	to	a	shift	in	the	dominant	vegetation	type		(Keeley,	2012;	
Pausas	et	al.,	2017;	Pickett	&	McDonnell,	1989).	The	present	 study	
tested,	 for	 the	 first	 time,	 the	effect	of	 fire	season	on	 the	perennial	
plant	community	in	typical	eastern	Mediterranean	woodlands.

We	hypothesized	 that	autumn	fires,	occurring	after	 the	 long	
dry	Mediterranean	 summer,	 should	 be	more	 severe	 than	 spring	
fires.	 We	 also	 hypothesized	 that	 fire	 season	 should	 differen-
tially	 influence	 the	 perennial	 plant	 community	 composition.	
Specifically,	we	 posited	 that	 fire	 in	 general	 and	 autumn	 fires	 in	
particular	 should	 reduce	 the	 relative	 abundance	 of	 dominant	
plant	species	while	increasing	the	relative	abundance	of	less	com-
mon	species.	The	below-	ground	carbohydrate	storage	of	obligate	
resprouters	 is	 lower	 during	 autumn	 than	 during	 spring	 (Cruz	 &	
Moreno,	2001;	Delillis	&	Fontanella,	1992).	We	thus	posited	that	
the	 relative	 abundance	 of	 obligate	 resprouters	 would	 be	 lower	
after	autumn	than	after	spring	fires	(Malanson	&	Trabaud,	1988;	
Paula	&	Ojeda,	 2009;	Paula	 et	al.,	 2016;	Rosas,	Galiano,	Ogaya,	
Peñuelas,	 &	 Martínez-	Vilalta,	 2013).	 In	 addition,	 seed	 whose	
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physical	 dormancy	 is	 broken	 during	 a	 spring	 fire	 would	 have	
to	 survive	 the	 long	 dry	 summer	without	 protection,	 and	 hence	
would	 have	 reduce	 chances	 to	 germinate	 during	 the	 following	
rainy	season	(Chamorro	et	al.,	2017).	We	thus	posited	that	the	rel-
ative	abundance	of	obligate	seeders	should	be	lower	after	spring	
than	 after	 autumn	 fires.	 Since	 facultative	 seeders	 can	 both	 re-
seed	and	resprout	post-	fire	(Bradbury	et	al.,	2016),	we	predicted	
that	fire	season	would	have	minimal	to	no	effect	on	their	relative	
abundances.

2  | METHODS

2.1 | Study area

The	study	was	done	in	Har	Yaaran	(Figure	1)	located	in	the	Judean	
Mountains,	 Israel	 (600	m	 a.s.l.;	 31°42′25N,	 35°2′17E).	 This	 region	

is	characterized	by	an	east	mediterranean	climate	with	short,	mild	
and	wet	winters	and	contrasting	 long,	dry	and	hot	summers	 (aver-
age	 temperature:	 winter	=	8.7°C,	 summer	=	23.5°C;	 Goldreich,	
2012).	 The	 dominant	 soil	 type	 is	 Terra	 Rosa,	 distributed	 between	
large	limestone	plates	(Singer,	2007).	The	average	annual	precipita-
tion	 is	 464	±	32	mm	 (2007–2016,	 Jerusalem,	 IMS).	 The	 vegetation	
formation	is	typical	Mediterranean	woodland	(Garrigue),	composed	
of	 phanerophyte	 shrubs	 (e.g.,	 Pistacia lentiscus,	 Rhamnus lycioides,	
Calicotome villosa and Quercus coccifera),	chamaeophytes	(e.g.,	Cistus 
salviifolius, Cistus creticus,	Teucrium divaricatum, Fumana arabica and 
Hyparrhenia hirta)	and	climbers	 (e.g.,	Rubia tenuifolia,	Smilax aspera,	
Prasium majus and Ephedra foeminea).	The	obligate	resprouter	P. len-
tiscus	is	a	dominant	shrub	up	to	1.5	m	in	height	with	a	wide	branch-
ing	architecture.	The	facultative	seeder	T. divaricatum is commonly 
found	 under	 the	 P. lentiscus	 canopy,	 together	 with	 other	 climbers	
such	as	R. tenuifolia and P. majus.	Other	chamaeophytes	such	as	the	
obligate	 seeders	C. salviifolius and C. creticus	 grow	 adjacent	 to	 the	

F IGURE  1 The	study	area	in	Har	Yarran	(a)	located	at	the	Judea	Mountains,	Israel	(b).	Each	of	the	twelve	experimental	plots	was	
randomly	assigned	to	one	of	the	following	fire	treatments:	spring	burn,	autumn	burn	and	unburned	control.	Each	plot	consists	of	eight	5	×	5	
m	subplots.
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P. lentiscus	shrubs,	up	to	an	average	height	of	0.4–0.6	m.	Hence,	the	
woodland	in	Har-	Yaaran	is	mainly	covered	in	patches	of	P. lentiscus 
(cover:	~20%)	and	Cistus spp.	(C. salviifolius and C. creticus,	both	spe-
cies	combined	cover:	~20%)	with	 inter-	shrub	gaps	occupied	by	an-
nual	herbs	from	winter	to	spring.

Fire	 history	 analysis	 revealed	 that	 more	 than	 3,800	 fires	 oc-
curred	in	the	Judean	Mountains	region	between	1987	and	2009	–	an	
average	rate	of	170	fires/year	(Tessler,	2012).	A	more	recent	analysis	
based	on	data	provided	by	the	JNF	(Jewish	National	Fund)	indicated	
that	at	least	48	fire	events	occurred	in	the	Judean	Mountains	during	
2013	(i.e.,	1	year	prior	to	our	seasonal	fires),	burning	a	total	area	of	
~0.9	ha.	Over	half	 (54%)	of	 the	 fires	occurred	during	 summer,	 8%	
during	autumn,	5%	during	winter	and	33%	during	spring	(Tsafrir	A.	
and	Ovadia	O.	unpubl	data).

2.2 | Experimental design and data collection

The	 experiment	 consisted	 of	 12	 50	×	30	m	 plots	 (Figure	1),	 each	
included	eight	5	×	5	m	sampling	subplots.	Experimental	plots	were	
randomly	assigned	to	one	of	the	following	three	fire	treatments:	(a)	
spring	burn	(i.e.,	early	Jun),	(b)	autumn	burn	(i.e.,	early	Sept)	and	(c)	
unburned	control,	 i.e.,	 four	 replicates	 (plots)	 for	each	fire	 regime.	
All	 plots	were	 located	 on	 south-	facing	 slopes	 close	 to	 the	 ridge.	
Professional	crews	of	the	Israeli	Forest	Service	(JNF)	executed	the	
burns	using	drip	torches.	The	following	measurements	were	taken	
from	 each	 subplot,	 every	 5	min	 during	 the	 burns,	 using	 mobile	
weather	 stations:	wind	speed,	 relative	humidity	and	air	 tempera-
ture.	Flame	heights	(i.e.,	proxy	of	fire	intensity)	were	estimated	re-
peatedly	by	an	observer	walking	behind	the	fire	line.	The	fire	was	
allowed	to	die	out	naturally.	Plant	water	content	was	determined	
during	each	of	the	two	fire	seasons	by	weighing	four	trimmed	twigs	
of	five	highly	abundant	plant	species	(P. lentiscus,	R. lycioides,	Cistus 
spp.,	Q. coccifera and C. villosa)	 from	 each	 plot,	 before	 and	 after	
oven	drying	(60°C,	48	hr).	Soil	moisture	was	determined	by	collect-
ing	soil	samples	(7-	cm	depth)	from	each	of	the	96	subplots	during	
each	of	the	two	burning	seasons.	Soil	moisture	was	estimated	by	
weighing	these	soil	samples	before	and	after	oven	drying	(105°C,	
24	hr).

Vegetation	surveys	were	held	before	(Apr	2014)	and	two	con-
secutive	 years	 after	 the	 burns	 (May–Jun	 2015	 and	 2016).	 A	 uni-
form	distribution	of	 25	points	was	 established	 in	 each	of	 the	96	
subplots	 (12	 plots	×	8	 subplots	=	96	 subplots).	 Perennial	 species	
(herbaceous	and	woody	species)	detected	within	the	20-	cm	radius	
around	 each	 sampling	 point	 were	 recorded.	 Species	 abundances	
were	 calculated	 as	 the	 number	 of	 points	 (out	 of	 25	 per	 subplot)	
at	 which	 each	 species	 was	 present.	 Fire	 severity	 was	 assessed	
10	days	after	 the	burns	using	 the	 same	grid	of	 sample	points.	At	
each	point,	we	determined	whether	the	vegetation	was	burned	by	
the	fire	(black),	died	from	the	heat	(dried	out,	but	not	burned	–	heat	
shock)	or	was	not	affected	by	the	fire	(i.e.,	remained	green).	Species	
regeneration	traits	taken	from	BROT	(Paula	et	al.,	2009),	TRY	da-
tabases	 (Kattge	et	al.,	2011)	and	Naveh	 (1975)	are	summarized	 in	
Supporting	Information	Appendix	S1.

2.3 | Statistical analysis

Conditions	before	the	burns	(i.e.,	soil	moisture	and	plant	water	con-
tent),	during	the	burns	(i.e.,	wind	speed,	relative	humidity	and	ambi-
ent	temperature),	and	fire	 intensity	(i.e.,	flame	height)	and	severity	
(i.e.,	proportion	of	burned	area	and	proportion	of	heat	shock	area)	
(Keeley,	2009)	were	analysed	using	one-	way	nested	ANOVAs	with	
fire	season	as	an	explanatory	variable	(Keeley,	2009).

The	 effects	 of	 fire	 season	 on	 perennial	 plant	 species	 (herba-
ceous	 and	 woody)	 community	 composition	 were	 first	 explored	
using	NMDS	(Clarke,	1993).	Species	abundances	at	the	subplot	level	
were	summed	to	the	plot	level.	Plant	abundances	were	square	root-	
transformed	 prior	 to	 calculating	 the	 Bray–Curtis	 similarity	matrix.	
Using	a	PERMANOVA	(Anderson,	2001),	we	tested	for	differences	
in	species	composition	between	fire	treatments.	SIMPER	(similarity	
percentages)	analysis	was	used	to	identify	the	species	that	contrib-
uted	 90%	 in	 total	 to	 the	 dissimilarly	 between	 different	 pair-	wise	
treatment	combinations	(e.g.,	unburned	control	vs	autumn	burn,	un-
burned	control	vs	spring	burn)	and	to	quantify	the	relative	contribu-
tion	of	each	species	to	the	overall	dissimilarity.	A	canonical	analysis	
of	principal	coordinates	(CAP)	was	applied	in	order	to	find	the	axes	
that	best	discriminate	between	a	priori	groups	(i.e.,	unburned	con-
trol,	 spring	burn	and	autumn	burn)	 and	 species	 (vectors)	best	 cor-
relating	with	 the	different	groups.	Species	vectors	projected	were	
only	those	having	Pearson	correlation	of	r	>	0.55.	All	these	multivar-
iate	analyses	were	performed	using	PRIMER	v.6	(Clarke	&	Warwick,	
1994).

There	was	slight	variation	in	plant	abundances	among	experi-
mental	plots	prior	to	the	fire.	To	test	for	differential	fire	treatment	
effects	on	the	abundances	of	perennial	plants	adopting	different	
regeneration	strategies	(i.e.,	obligate	resprouters,	obligate	seeders	
and	facultative	seeders),	we	calculated	the	proportional	change	in	
their	total	abundances	in	the	first	post-	fire	year	relative	to	the	pre-	
fire	year.	To	test	for	differential	recovery	patterns,	we	calculated	
the	proportional	 change	 in	 their	 total	 abundances	 in	 the	 second	
post-	fire	year	relative	to	the	first	post-	fire	year.	These	data	were	
analysed	 using	 one-	way	 ANOVAs,	 with	 fire	 treatment	 (i.e.,	 un-
burned	control,	spring	burn	and	autumn	burn)	as	the	between	sub-
ject	factor,	followed	by	Newman-	Keuls	post-	hoc	test	designed	to	
have	more	statistical	power	than	the	Tukey’s	post-	hoc	test	(Abdi	&	
Williams,	2010).	All	ANOVAs	were	done	in	STATISTICA	v	12	(Dell,	
Tulsa,	OK,	USA).

3  | RESULTS

Ambient	 temperature	was	 lower	 and	 relative	humidity	was	higher	
during	 spring	 than	 during	 autumn	 burns	 (temperatures:	 p = 0.037;	
relative	humidity:	p = 0.042;	Table	1).	Wind	speed	was	faster	during	
spring	than	during	autumn	burns	(p = 0.001;	Table	1).	Soil	and	plant	
water	content	were	higher	during	spring	than	during	autumn	burns	
(soil	 moisture	 spring:	 p = 0.003;	 plant	 water	 content:	 p = 0.008; 
Table	1).	Flame	height	(i.e.,	proxy	of	fire	intensity)	was	slightly	higher	
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during	autumn	than	during	spring	burns,	but	these	differences	were	
not	significant	(p = 0.322;	Table	1).	No	significant	differences	in	the	
proportions	of	burned	or	heat	shock	areas	were	detected	between	
the	two	burning	seasons	(proportion	of	burned	area:	p = 0.228; pro-
portion	of	heat	shock	area:	p = 0.465;	Table	1).	These	results	imply	
that	 fire	 intensity	 and	 severity	 were	 largely	 consistent	 between	
spring	and	autumn	burns	(Table	1).

A	species	ordination	(NMDS)	illustrated	that	the	unburned	con-
trol	 plots	 were	 clustered	 together	 (Figure	2),	 and	 that	 they	 were	
separated	from	plots	subjected	to	both	spring	and	autumn	fires	(see	
species	 list	 in	 Supporting	 Information	 Appendix	 S2).	 Indeed,	 fire	
caused	a	significant	shift	in	the	perennial	plant	community	compo-
sition	 (see	PERMANOVA	and	pair-	wise	comparisons	 in	Supporting	
Information	Appendices	S3	and	S4).	Prior	to	the	burns,	there	were	
no	significant	differences	in	the	composition	of	perennial	plant	spe-
cies	 between	 plots.	 A	 year	 after	 the	 fires,	 species	 composition	 in	
plots	subjected	to	spring	and	autumn	burns	varied	significantly	from	
that	observed	in	the	unburned	control	plots.	Furthermore,	margin-
ally	significant	differences	in	species	composition	were	detected	be-
tween	plots	subjected	to	spring	and	autumn	burns.	Two	years	after	
the	fires,	the	differences	in	species	composition	between	unburned	

control	 and	 autumn	 burned	 plots	 became	 non-	significant,	 while	
differences	 between	 unburned	 control	 and	 spring	 burned	 plots,	
and	between	autumn	and	spring	burned	plots	remained	significant	
(Figure	2,	Supporting	 Information	Appendix	S4).	The	 recovery	 tra-
jectories	of	the	perennial	vegetation	in	four	out	of	eight	burned	plots	
(two	autumn	and	two	spring	burned	plots)	pointed	towards	the	pre-	
fire	state	(Figure	2).	In	two	other	plots	(one	autumn	and	one	spring	
burned	 plot)	 there	were	 no	 signs	 of	 such	 a	 recovery,	while	 in	 the	
remaining	two	plots	perennial	plant	community	composition	tended	
to	drift	away	from	its	pre-	fire	state	(Figure	2).

Nine	of	 the	40	perennial	plant	species	 that	were	 found	 in	 the	
pre-		and	first	post-	fire	vegetation	surveys	contributed	about	50%	
(in	total)	to	the	dissimilarity	between	unburned	control	and	spring	
burned	plots,	and	between	unburned	control	and	autumn	burned	
plots	(Figure	3).	In	both	pair-	wise	comparisons,	the	dominant	peren-
nial species were P. lentiscus,	Cistus spp.,	F. arabica and T. divarica-
tum,	contributing	~30%	(in	total)	to	the	dissimilarities	in	community	
composition.	 Even	 though	 the	 dominant	 perennial	 plant	 species	
experienced	 the	highest	 reductions	 in	 their	 abundances,	 they	 re-
mained	 dominant	 in	 the	 perennial	 plant	 community	 in	 all	 burned	
plots.	CAP	analysis	(Figure	4)	illustrated	that	most	of	the	perennial	

Variable Spring Autumn F(1,52) p

Soil	moisture	(%) 7.60	±	0.37 3.30	±	0.22 22.457 0.003

Plant	water	content	(%) 47.63	±	0.45 37.36	±	0.23 15.426 0.008

Wind	speed	(km/hr) 10.48	±	0.67 3.35	±	0.24 35.732 0.001

Relative	humidity	(%) 51.60	±	1.36 41.05	±	0.54 6.622 0.042

Ambient	temperature	
(ºC)

25.68	±	0.48 29.50	±	0.187 7.109 0.037

Flame	height	(m) 1.18	±	0.16 2.21	±	1.80 1.162 0.322

Burned	area	(%) 45.98	±	4.16 37.11	±	4.01 1.801 0.228

Heat	shock	area	(%) 17.45	±	2.25 21.00	±	2.26 0.610 0.465

Notes.	Flame	height	(i.e.,	proxy	of	fire	intensity)	and	proportion	of	burned	and	heat	shock	areas	(i.e.,	
proxies	of	fire	severity).

TABLE  1 Environmental	conditions	
prior	(i.e.,	soil	moisture	and	plant	water	
content)	and	during	(i.e.,	wind	speed,	
relative	humidity	and	ambient	
temperature)	the	burns

F IGURE  2 Non-	metric	
multidimensional	scaling	(nMDS)	
ordination	(stress	=	0.18),	based	on	
Bray-	Curtis	similarity	matrix,	exploring	
differences	in	the	perennial	plant	
community	composition	between	
experimental	plots	prior	to	and	after	the	
prescribed	spring	and	autumn	burns
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species	which	were	positively	 correlated	with	 spring	 and	 autumn	
burns	were	less	common	in	the	study	area	prior	to	the	fires,	except	
for	F. arabica.	This	species	was	dominant	prior	to	the	fires	and	ex-
hibited	 increased	abundance	after	 the	burns	 in	general,	 and	after	
autumn	burns	 in	particular	 (Supporting	 Information	Appendix	S2).	
Only	one	 species,	Piptatherum miliaceum	 (facultative	 seeder),	was	
positively	correlated	with	spring	burned	plots	(Figure	4).	This	spe-
cies	was	more	abundant	in	plots	subjected	to	spring	burns	than	in	
the	 unburned	 control	 plots,	 while	 being	 completely	 absent	 from	
plots	 subjected	 to	 autumn	 burns.	 Seven	 species	 were	 positively	
correlated	with	 autumn	 burned	 plots,	 six	 of	which	were	 obligate	
seeders	 (Stipa bromoides,	 Micromeria nervosa,	 Phagnalon rupes-
tre,	F. arabica and Atractylis comosa),	 and	one	a	 facultative	 seeder	
(H. hirta).	 In	contrast,	 five	obligate	resprouters	 (P. lentiscus,	Q. coc-
cifera,	 P. majus,	 R. tenuifolia and S. aspera),	 two	 obligate	 seeders	
(Cistus sp. and E. foeminea)	and	one	 facultative	seeder	 (T. divarica-
tum)	 were	 positively	 correlated	 with	 the	 unburned	 control	 plots	
(Figure	4,	Supporting	Information	Appendix	S2).

The	proportional	change	in	total	abundance	of	plants	adopting	dif-
ferent	regeneration	strategies	between	pre-	fire	year	and	the	first	post-	
fire	year	was	negative	(Figure	5a).	This	reduction	was	significant	among	
obligate	 seeders	 (Figure	5a;	 F2,	 9	=	6.987,	 p = 0.014)	 and	 obligate	 re-
sprouters	(Figure	5a;	F2,	9	=	36.441,	p = 0.000),	but	not	among	faculta-
tive	seeders	(Figure	5a;	F2,	9	=	2.118,	p = 0.176).	Pair-	wise	comparisons	
indicated	that	the	proportional	reduction	in	total	abundance	of	obligate	
seeders	was	 larger	 after	 spring	 than	 after	 autumn	burns	 (Newman–
Keuls	 post-	hoc	 test:	 pcontrol	 vs.	 spring	=	0.001,	 pcontrol	 vs.	 autumn	=	0.157,	
pspring	 vs.	 autumn	=	0.058).	 No	 such	 differential	 fire	 season	 effect	 was	
detected	among	obligate	 resprouters	 (Newman–Keuls	post-	hoc	 test:	
pcontrol	vs.	spring	<	0.001,	pcontrol	vs.	autumn	<	0.001,	pspring	vs.	autumn	=	0.843).	
Similar	patterns	were	detected	for	the	most	common	species	in	a	set	
of	analyses	at	the	species	level	(Supporting	Information	Appendix		S5).

A	 significant	 increase	 in	 the	 abundance	 of	 facultative	 seed-
ers	 was	 evident	 when	 contrasting	 the	 first	 and	 second	 post-	fire	

years	(Figure	5b;	F2,	9	=	7.678,	p = 0.011),	however,	no	such	pattern	
was	detected	among	obligate	 resprouters	 (Figure	5b;	F2,	9	=	3.478,	
p = 0.078)	 or	 obligate	 seeders	 (Figure	5b;	 F2,	 9	=	1.57,	 p = 0.260).	
Pair-	wise	 comparisons	 indicated	 that	 the	proportional	 recovery	of	
facultative	 seeders	 was	 consistent	 between	 the	 two	 fire	 seasons	
(Newman–Keuls	 post-	hoc	 test:	 pcontrol	 vs.	 spring	=	0.016,	 pcontrol	 vs.	 au-
tumn	=	0.0124,	pspring	vs.	autumn	=	0.487).	Again,	species	 level	analyses	
revealed	similar	patterns	(Supporting	Information	Appendix	S5).

F IGURE  3 Total	per	plot	abundances	
(±SE)	of	perennial	species	detected	using	
SIMER	(similarity	percentages)	analysis.	
The	species	are	listed	according	to	their	
contribution	to	the	dissimilarity	between	
unburned	control	and	autumn	burned	
plots,	and	between	unburned	control	and	
spring	burned	plots,	during	the	first	post-	
fire	year

F IGURE  4 Canonical	analysis	of	principal	coordinates	(CAP),	
based	on	Bray-	Curtis	similarity	matrix,	aiming	to	discriminate	
between	experimental	plots	by	the	different	fire	treatment	groups.	
Among	the	eight	species	positively	correlating	with	the	unburned	
control	plots,	five	are	obligate	resprouters,	two	are	obligate	
seeders,	and	one	is	a	facultative	seeder.	Except	for	H. hirta	(a	
facultative	seeder),	all	other	species,	positively	correlating	with	
autumn	burned	plots,	are	obligate	seeders
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4  | DISCUSSION

Fire	disturbance	plays	an	important	role	 in	dictating	plant	commu-
nity	dynamics	in	a	variety	of	ecosystems	(Keeley,	1991;	Naveh,	1975;	
Pausas	&	Keeley,	2009).	We	report	here	the	results	of	a	large-	scale	
field	 experiment,	 examining	 the	 consequences	 of	 fire	 season	 on	
the	community	composition	of	perennial	plants	in	a	typical	eastern	
Mediterranean	woodland.	We	illustrate	that	fire	in	general	and	fire	
season,	in	particular,	cause	significant	changes	in	the	perennial	plant	
community	composition.	Specifically,	although	fire	intensity	and	se-
verity	were	largely	consistent	between	the	two	burning	seasons,	the	
overall	negative	effect	of	fire	on	the	abundance	of	obligate	seeders	
was	stronger	after	spring	burns,	resulting	 in	two	distinct	perennial	
plant	 communities	 (herbaceous	 and	 woody)	 that	 differed	 in	 their	
species	composition.

Relative	humidity	was	higher	and	wind	speed	was	faster	during	
spring	 than	during	 autumn	burns.	 The	high	 relative	humidity	miti-
gated	the	positive	effect	of	wind	velocity	on	fire	 intensity	and	se-
verity.	Consequently,	we	could	not	detect	significant	differences	in	
flame	height	(i.e.,	proxy	of	fire	intensity)	and	proportion	of	burned	

area	(i.e.,	proxy	of	fire	severity)	between	the	two	burning	seasons.	
We	 interpreted	 this	 to	mean	 that	 the	 observed	 differential	 effect	
of	 fire	season	on	the	abundance	of	obligate	seeders	should	be	at-
tributed	to	phenological	effects.	A	similar	result	was	reported	 in	a	
previous	study,	in	the	western	Mediterranean	Basin,	examining	the	
effect	of	fire	season	on	germination	density	from	the	soil	seed	bank	
(Céspedes	et	al.,	2012).	A	vegetation	survey	in	this	same	experimen-
tal	 system	 revealed	 no	 significant	 differences	 in	 the	 abundances	
of	 resprouters	 and	 seeders	 between	 burning	 seasons	 (Céspedes,	
Torres,	Perez,	Luna,	&	Moreno,	2014).	Other	studies	asserted	that	
germination	 of	 obligate	 seeders	 is	 affected	 by	 time	 between	 the	
physical	dormancy	break	of	seeds	by	fire	heat	and	the	onset	of	the	
rainy	 season	 (Daskalakou	 &	 Thanos,	 2004;	 Ooi,	 Auld,	 &	Whelan,	
2004;	 Pausas,	 Ribeiro,	&	Vallejo,	 2004;	 Prevosto,	Gavinet,	 Ripert,	
&	Fernandez,	2015).	 In	 the	eastern	Mediterranean	woodlands	 the	
rainy	season	begins	during	autumn,	and	this	may	also	explain	why	
the	abundance	of	obligate	seeders	was	higher	in	areas	subjected	to	
autumn	than	to	spring	burns.

Pistacia lentiscus,	 the	most	dominant	obligate	 resprouter	 in	our	
system,	exhibited	a	substantial	decrease	in	its	abundance	irrespec-
tive	of	 fire	season.	 In	contrast	 to	obligate	and	 facultative	seeders,	
P. lentiscus	abundance	was	low	also	during	the	second	post-	fire	year,	
implying	 low	recovery	 rate.	The	 removal	of	 the	P. lentiscus canopy 
probably	resulted	in	increased	light	and	nutrient	availability	(Kutiel	&	
Naveh,	1987;	Ne’eman,	1997;	Ne’eman,	Henig-	Sever,	&	Eshel,	1999;	
Ne’eman	 &	 Izhaki,	 1999),	 allowing	 both	 obligate	 and	 facultative	
seeders	to	take	over	the	open	canopy	gaps.	Fire	season	had	no	dif-
ferential	effect	on	obligate	resprouters	in	general	and	on	P. lentiscus 
in	 particular.	 Our	 results	 are	 consistent	 with	 those	 of	 Céspedes,	
Luna	et	al.	 (2014),	who	also	could	not	detect	a	significant	effect	of	
fire	season	on	the	abundance	of	obligate	resprouters.	Several	stud-
ies	have	illustrated	that	resprouter	species	store	reserves	in	excess	
of	 their	needs	 for	a	single	 resprouting	episode	 (Canadell	&	Lopez-	
Soria,	1998;	Cruz	et	al.,	2003;	Wright	&	Clarke,	2007),	and	that	these	
reserves	 are	 renewed	between	 fire	 events	 (Paula	&	Ojeda,	2009).	
Cruz,	 Pérez,	 Quintana,	 and	Moreno	 (2002)	 and	 Cruz	 et	al.	 (2003)	
suggested	 that	 other	 factors,	 such	 as	 soil	 nutrients,	 water	 avail-
ability	and/or	plant	size,	can	limit	the	post-	disturbance	regrowth	of	
Erica australis	 more	 than	 its	 carbohydrate	 storage.	 Konstantinidis,	
Tsiourlis,	and	Xofis	(2006)	showed	that	the	recovery	rate	of	the	com-
mon	obligate	 resprouter,	Arbutus unedo,	 tended	 to	be	higher	 after	
spring	than	after	autumn	burns	in	Greece;	however,	this	pattern	was	
evident	only	in	the	north	and	east	aspects.	The	authors	concluded	
that	the	relative	importance	of	local	environmental	conditions	(e.g.,	
water	availability)	in	determining	plant	regeneration	patterns	can	be	
higher	than	that	associated	with	fire	season.

In	the	Mediterranean	region,	shoot	growth	of	facultative	seed-
ers	 occurs	 during	 the	 spring	 and	 autumn	 seasons	 (e.g.,	T. divarica-
tum C. villosa and S. spinosum),	 while	 their	 physiological	 activity	 is	
restricted	 to	 the	 summer	 and	 winter	 (Delillis	 &	 Fontanella,	 1992;	
Keeley	 &	 Bond,	 1997;	 Keeley	 et	al.,	 2006;	 Naveh,	 1975;	 Yiotis,	
Psaras,	&	Manetas,	2008).	 In	accordance	with	our	hypothesis,	 the	
decrease	 in	 total	 abundance	of	 facultative	 seeders	was	consistent	

F IGURE  5 Proportional	changes	of	the	total	abundances	of	
facultative	seeders	(FS),	obligate	resprouters	(OR),	and	obligate	
seeders	(OS)	in	(a)	the	first	post-	fire	year	relative	to	the	pre-	fire	
year,	and	(b)	in	the	second	post-	fire	year	relative	to	the	first	post-	
fire	year
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between	the	two	fire	seasons.	In	addition,	the	proportional	change	
in	total	abundance	of	facultative	seeders	was	lower	than	that	of	obli-
gate	resprouters,	and	higher	than	that	of	obligate	seeders.	One	pos-
sible	explanation	is	that	facultative	seeders	may	have	compensated	
for	the	germination	reduction	caused	by	spring	burns	via	vegetative	
growth.	After	autumn	burns,	the	proportional	change	in	total	abun-
dance	of	facultative	seeders	was	similar	to	that	of	obligate	seeders,	
and	 lower	 than	 that	of	obligate	 resprouters.	The	 latter	 result	 sug-
gests	that	facultative	seeders	may	have	compensated	for	their	poor	
ability	to	resprout	during	autumn	through	seed	germination	(Marais,	
Pratt,	Jacobs,	Jacobsen,	&	Esler,	2014;	Pratt	et	al.,	2012).

Community	shifts	between	alternative	stable	states	can	occur	
when	 the	 disturbance	 is	 large	 enough	 to	 push	 the	 community	
out	 of	 the	 current	 stable	 state	 into	 an	 alternative	 one	 (Beisner	
et	al.,	2003;	Odion	et	al.,	2010).	Mediterranean	type	regions	and	
specifically	 the	Mediterranean	Basin	 are	 fire-	prone	ecosystems,	
where	plant	species	evolved	alongside	recurring	fire	disturbances	
(Keeley,	2012;	Ne’eman,	Izhaki,	&	Keeley,	2012;	Pausas	&	Keeley,	
2014).	Consequently,	 it	 is	widely	accepted	 that	 in	 these	ecosys-
tems	an	occasional	fire	event	will	not	result	in	a	community	state	
transition	 (Keeley,	 1986b;	 Lavorel,	 1999;	 Malanson	 &	 Trabaud,	
1987).	 For	 instance,	 following	 the	 1988	 wildfire	 that	 occurred	
in	 Mt.	 Carmel,	 Israel,	 woody	 perennial	 species	 (e.g.,	 trees	 and	
shrubs)	 regenerated	 in	 the	 same	 locations	 where	 they	 existed	
prior	 the	fire,	while	annual	herbaceous	species	utilized	the	tem-
porally	 unoccupied	 spaces	 (Kutiel,	 1994).	As	 the	woody	vegeta-
tion	 matured,	 the	 abundance	 of	 annual	 species	 returned	 to	 its	
limited	pre-	fire	state,	leaving	a	large	seed	bank	in	the	soil	(Kutiel,	
1994;	 Ne’eman	 &	 Izhaki,	 1999).	 This	 response	 pattern	was	 also	
evident	 in	other	areas	 in	Mt.	Carmel	subjected	to	 repetitive	 fire	
incidents	(Wittenberg,	Malkinson,	Beeri,	Halutzy,	&	Tesler,	2007).	
Similarly,	 a	 large-	scale	 field	 experiment	 conducted	 in	 Portugal,	
which	 included	 prescribed	 spring	 and	 autumn	 burns	 (Céspedes,	
Luna	et	al.,	2014),	illustrated	that	4	years	after	spring	and	autumn	
burns,	plant	community	composition	returned	to	its	pre-	fire	state.	
Nevertheless,	we	 suggest	 that	 even	 if	 the	 plant	 community	will	
most	likely	return	to	its	pre-	fire	stable	state,	such	short-	term	tem-
poral	 changes	 can	 further	 affect	 the	 circle	 of	 “fire	 event–plant	
regeneration–fire	 reoccurrence”,	 eventually	 determining	 the	
probability	 and	 intensity	 of	 future	 fires.	 For	 instance,	 recently	
studies	have	illustrated	that	flammability	traits	are	often	linked	to	
plant	regeneration	strategy	(Bond	&	Midgley,	1995;	Pausas	et	al.,	
2017;	Saura-	Mas	et	al.,	2010),	 suggesting	 that	 seeders	are	more	
flammable	 than	 resprouters.	 Hence,	 the	 differential	 fire	 season	
effect	 on	 obligate	 seeders	 can	 translate	 into	 differences	 in	 fuel	
accumulation	 rates,	 creating	 different	 conditions	 that	 influence	
the	 fire-	free	 interval,	 next	 fire	 behavior	 and	 plant	 regeneration	
(Bond	&	Midgley,	2001;	Clarke,	Knox,	Bradstock,	Munoz-	Robles,	
&	Kumar,	2014;	Cochrane	et	al.,	1999;	Keeley,	Brennan,	&	Pfaff,	
2008;	 Ormeño	 et	al.,	 2009;	 Pausas,	 2015;	 Pausas	 et	al.,	 2016).	
Furthermore,	 at	 the	 landscape	 scale,	 fire	 events	 taking	 place	 at	
different	 locations	and	 in	different	seasons	can	 result	 in	a	 land-
scape	 mosaic	 comprised	 of	 patches	 differing	 in	 their	 perennial	

plant	composition	(Turner,	Gardner,	&	O’neill,	2001;	Turner,	2005)	
and	 flammability	 (Dantas	 et	al.,	 2016;	 Pausas	 et	al.,	 2017).	 We	
thus	suggest	that	increased	spatio-	temporal	heterogeneity	in	fire	
season	may	result	 in	a	new	landscape	mosaic,	differing	from	the	
contemporary	one	 to	 the	extent	 that	 it	can	be	considered	as	an	
alternative	stable	state.

Forest	 managers	 have	 long	 recognized	 that	 pyrodiversity	
(i.e.,	 variability	 in	 the	 spatiotemporal	 distribution	 of	 fires)	 can	
promote	 and	 maintain	 biodiversity	 in	 fire-	prone	 ecosystems	
(Bradstock,	 Bedward,	Gill,	 &	Cohn,	 2005;	Martin	&	 Sapsis,	 1992;	
Parr	&	Andersen,	2006).	This	 idea	has	served	as	the	basis	 for	de-
velopment	of	the	variable	mosaic	concept,	implying	that	managers	
should	 aim	 to	 promote	 variability	 in	 both	 the	 visible	 fire	 mosaic	
(i.e.,	time	since	fire,	fire	size,	fire	severity,	fire	patchiness)	and	the	
underlying	 invisible	 mosaic	 (i.e.,	 lengths	 of	 past	 inter-	fire	 inter-
vals,	 fire	 frequencies;	Bradstock	 et	al.,	 2005;	Ponisio	 et	al.,	 2016;	
Tingley,	Ruiz-	Gutierrez,	Wilkerson,	Howell,	&	Siegel,	 2016).	More	
recent	work	has	shown	that	translating	this	concept	into	a	system-	
specific	management	plan	may	be	challenging	(Driscoll	et	al.,	2010;	
Foster,	Barton,	MacGregor,	Robinson,	&	Lindenmayer,	2017;	Kelly,	
Brotons,	&	McCarthy,	2017;	Parr	&	Andersen,	2006).	Nevertheless,	
our	findings	may	have	important	implications	for	conservation	and	
management	 of	 the	 eastern	Mediterranean	 ecosystem.	We	 show	
that	 irrespective	 of	 fire	 intensity	 and	 severity,	 seasonal	 fires	 dif-
ferentially	 influence	 the	 perennial	 seeders.	 We	 interpret	 this	 to	
mean	that	fire	season	is	an	important	component	of	the	visible	fire	
mosaic,	and	that	promoting	spatio-	temporal	variability	 in	fire	sea-
son	 can	 play	 a	 key	 role	 in	maintaining	 biodiversity	 in	 this	 unique	
ecosystem.

An	 effective	 way	 to	 prevent	 the	 spread	 of	 wildfires	 is	 to	 re-
duce	the	amount	of	 flammable	substances	 (i.e.,	 live	and	dead	veg-
etation)	 and	 to	break	 their	 contiguity	using	 fire	breaks	 and	buffer	
zones	(Fischer,	1984).	We	illustrate	that	spring	burns	have	a	stronger	
negative	 effect	 on	 the	 abundance	 of	 perennial	 seeders	 compared	
to	autumn	burns,	and	that	no	such	differential	effect	exists	among	
resprouters.	 Since	perennial	 seeders	 are	more	 flammable	 than	 re-
sprouters	 (Pausas	 et	al.,	 2017;	 Saura-	Mas	 et	al.,	 2010),	 conducting	
spring	burns	can	be	an	effective	way	to	reduce	the	flammability	of	
the	live	vegetation	in	fire	breaks	and	buffer	zones.
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