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Abstract 17

Species Distribution models (SDMs) are often limited by the use of ecesskiution 18
environmental variableand by thenumber of observationseededo calibrate SDMs 19
This isparticularlytruein the case of elusive animals. Here,dexeloped a SDNyy 20
combiningthree elements: a database of explanatory variables, mapped at a fine 21
resolution;a systematic sampling scheme; and an intensive survey of indirect 22
observationsUsing MaxEnt, ve developedhe SDM for the population of the Asiatic 23
wild ass Equus hemionysa rare and elusive species three spatial scales: 10, 100, 24
and 1000 m per pel. We used indirect observations of feces moukds constructed 25
14 layers ofexplanatory variablesn five categories: water, topography, biotic 26
conditions, climatic variables and anthropogerdoables Woody vegetation cover 27
and slopes were found bave the strongest effect on the wild ass distribution and 28
were included as the main predictors in the SDM. Model validation revealed that aR9

intensive survey of feces mounds and higbolution predictor layers resultedina 30

highly accurae andinformative SDM. Fine-grain (10 m and 100 m$DMs can be 31
utilized to: 1) characterize thariablesinfluencing species distribution at high 32
resolutionand local scale, includingnthropogenic effects and geomorphologic 33

features 2) detecpotentialpopulation actiity centers; 3) locatpotentialcorridors of 34
movementndpossiblesolated habitat patches. Such information may be useful for35
the conservation efforts of the Asiatic wild ashis approacleould beappliedto 36

other elusive species, particularly largammals. 37

Keywords: Equus hemionus habitat preferences Faeces MAXENT ; 38

SDM,; spatially explicit model. 39

40



Introduction 41

Spatially explicit Species Distribution Models (SDMs) are commonly used for 42
purposes of conservation, environmental planning, and veldiginagement 43
programgGuisan et al. 20135DM models quantify the relationslspetweerthe 44

distribution and demograplof a specieandthe environmen{Peterson 20115DMs 45
allow usto studyspeciedlistributionin largeareas anéven inremote habitaisvhere 46
logistic and fhancialrestrictions precluddirect observatios(Duff and Morrell a7
2007) Theymay be particularly usefdibr assessing the succesg@htroduction 48
activities(Manel et al. 1999; Manel et al. 200Understanding habitaharacteristics 49
and distributiordeterminant®f reintroduced species is importantorderto ensure 50
the protection ofandscape componeritsgatarecritical for the longterm persistence 51
of these species in the wild. 52
The use of environmentahriablesto explain and predict species distribution is not 53
trivial, since these relationships are complex, and a large number of vaaables 54
involved (Guisan and Zimmermann 2000; Radosavljevic and Anderson.20i4) 55
well known that thevariablesthataffectthedistributionof a specieshange with the 56
change of observation scgBlank and Carmel 2012; Crawley and Harral 2001; Kent7
et al. 2011; Stauffer and Best 1986parsescale distribution models may be 58
preferred in, for example, bigeographic studies. In contraBhe-scale distribution 59
models can degt local scale phenomena such as essential corridors and animal 60
passages and effects of roads and rivers, which eseaée modelsannotdetect. 61

Thus, fine-scale distribution models malye preferable for conservation planning ands2

managemeniHess et al. 2006)'et, in mosttudies, the selection ofsolutionis a 63
consequece of the availability and qualityof data pertaining tthe specific study 64
area, which is typically the limiting factor in distribution studigsth et al. 2006; 65



Hess et al. 2006pata layers used in such studiestgpecally derived from global 66
databasewherel kn? is considered the finest resolution 67
Presence/absence information is thought to be preferm@senceonly information 68
in SDMs. However, presegabsence information mmoredifficult or impossible to 69
obtainthanPresencenly information(Kent et al. 2011; Pearce and Boyce 2006; 70
Tsoar et al. 2007However, preseneenly data maye subject téarge erros dueto 71
small sample size and biased samp&sham et al. 2004; Phillips and Elith 2018) 72
systematiaatacollection surveydesigned to codict dataat precise locationshould 73
largely reduce these biases. 74
Indirect observations, and in particular dung surveys, are commeinvesive 75
approaches for obtaining information about the presence of species and habitat 76
selectionThey are particularlyseful when the studied species is hard to dineto 77
its elusive behavior, rarity, or habif@&ernandez et al. 2006; Vina et al. 2QIHe 78
use of indirect observations in SDMs reqaa clear connection betweéme 79
presence of the species ahdfeces(Gallant et al. 2007; Kays et al. 2008; Perinchery80
et al. 2011)Systematic dung survey, conducted in sites selected to represent the 81
entirerange of environmental conditions in a region, can be an appropriate solutior8&

samplingbias problemgFernandez et al. 2006; Norris 2014; Vina et al. 2010) 83

Here, we develogda species distribution model fdre population of the Asiatic 84
Wild Ass Equus hemionysa rare and elusive species that was reintroduced into th@5
Negev Desert in Israel. Wemmbined three elements in order to overcome the 86
obstacles in developing SDMa database of spatial layers of exgtory variables, 87
mapped at a very fine resolution; a systematic sampling scheme; and an intensive88
surveyof indirect observationgresence ofeces moundsThis approach ledo 89

important insights regarding the habitat preferences of this species 90



Methods 91

Study species 92

The Asiatic wild asss an endangered speci@doehiman et al. 2008)n the past, the 93
Syrian wild assE. h. hemippussubspeciesas foundn the Middle Eastand 94
becameextinct in the wild at the beginning of the"2@entury(Groves 1986; Saltz et 95

al. 2000; Schulz and Kaiser 2018B) 1968 a breeding core was established in Israel 96

usingindividuals from the subspeci&sh. onagerandE. h. kulanbroughtfrom Iran 97
and Turkmenistan, respectively 1982 thdsraelNature and Parks Authority 98
initiatedareintroduction program of the Asiatic wild a$so(n the breeding coref 99

thesetwo subspecie¢Saltz et al. 2000jThe first individuals were teased neariB- 100
Saharonim in Maktesh RamoifFig. 1). By 1993 threeadditionalreleases were 101
conductedatthis site andwo morein the ParanstreambedSaltz and Rubenstein 102
1995) A total of 38 indvidualswerereleasedThe wid asspopulation exparedits 103
rangein the Nege\Desertandthe Aravavalley (Saltz and Rubenstein 1998nd the 104

currentpopulation is estimated atore thar250individuals(Renan et al. 2015) 105
Study area 106

The studyareaextendsover approximately 800 knt in the centrapartof the Negev 107
Desert(Fig. 1). Theareais arid and characterized by high daytime temperatures (on108
average 33°C) and relatively lavighttime temperature®n average 12°CMean 109
annualprecipitation ranges betwe&0 mmand150mm (Stern et al. 1986Flevation 110
ranges between 50033 m, and the ardms a complegeomorphologial structure 111
The bedrock is mainly hard limestone, resulting in a cliffy landscape and leveled 112
floodplains.The majority of the areis drained by two maiephemerastreambesl 113

(wadis)i Nekarot and Paraifhere are sever#titudinal geological faulsin the 114



regionthat create ateep terracelhndscapeFlashfloods are a common phenomenon 115
after rain events. Thitiashfloods fill water holesn thestreambedsvhich may hold 116
for a fewmonths. There are very few natural wegeurces that provide water year 117
round. Vegetation is mostly limited to streaamsl their surroundingendgenerally 118
located on théanks Vegetation in thetreamss mostlyof a SahareArabianorigin, 119
with a Sudaniarcomponentn the Arava(Danin 1999)It is dominated byhree native 120

Acacia treespeciesAceacia raddiana, A. tortilisandA. pachyeras 121
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Figure 1. The study region, reintroduction and sampling sites in the Negev Desert,123

Israel.

Data collection

We selected 122 sampling sites usingpproximatesystematiccampling scheme

(Fig. 1) in order tocapturethefull range of conditions found in the study regidn.
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ensureaccurataepresentation of the environmental conditionthasampling sites
we stratified the sampling locations accordingticee environmental parameters
distance from permanent water sources, altitadd mean temperatuoé the hottest

month. Based on ouarior knowledge of the study specisd a literéure review

129

130

131

132

(Henley and Ward 2006; Henley et al. 2007; Saltz and Rubenstein 1995; Saltz et dl33

1999) we consideretheseenvironmentaVariablesto have a high potentidibr
explainingwild assdistribution Thesevariableswere represented l§yIS layersand
combinednto athreebandedcompositeon which weperformedK-means
unsupervised classificatiamsingERDAS IMAGINE V 9.1. The objective of this
classification was to divide the study region into polygwith similar combinations
of thesevariablegCarmel and Stolle€avari 2006)The 122 ampling sites were
systematicallydistributed among thegmlygons.

In each sampling site we conducted a feces suRepal droppingsf wild ass
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congitute a straightforward indicator for specmgsencédecause they are deposited 142

frequently, and remain visible in the desert environment for several months (up to 143

about a year)The surveyin each sitavascomposed othree500m belt transects
arrangeds an equilateral triangle with a total length of 15Q0@nd divided intd.50
surveyunits of10X10m per siteOne of the trianglsideswasalways laidonadry
river-bednearest to the point defined as the center of the sampliny\V&teecorded
obsevations at a distance ofrb oneithersideof thetransectwhere detection
probability of fecesvas100% The exact location okeces mounddroppings as well
as dung pilesobservedn the transeatere recorded using a GRSa spatial
accuracy ol m. The number of feces moundsthin each10 mpixel wasrecorded

During Januar009to June 2009 wsurveyed 122 sites and explorEsD units per
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site, with a total sampled areaof 183Raor t h e -odp ryéds &rbdMe welbX | a s s

each uni tifoaeormoperfeees moumndd were found in that unit. 154
Data analysis 155
Explanatoryvariables 156
We devoted extensive efforts creae a high resolution digital data set of 157
environmental variables. We generalddspatial layers (Table 1jrom which the 158

model pedictors were derived heselayerspertainto five maincategoriegTable 1) 159
vegetation (one variable), topography (4), clim&)e &dnthropogenivariableg5), 160
and distance from wat€2 variable3. The vegetation layer wakerived froma 161
conmplex proessing of an aerial photo (Appendix Topography was derived from a 162
DEM of the areaat an original resolution of 10 m. Climate layers had an original 163
resolution of 1 km, and were tgzaledto a 10 m resolution. Distancedtdayers were 164
constructed usinguclideandistance to specific elements on the map at an original 165
resolution of 10 m. In ordeotreduce multicollinearity, correlation coefficients were 166
calculated between each pair of variables; in pairs with a high correlati@® (fGs- 167

0.65 Pearsororrelation), one of the variables was eliminated from the médelap 168

of each explanatory variab&ppears ilAppendix 2 169

Table 1 Predictors used in the distribution model of wild ass. Staisdicate 170

variables eliminated from the model due to high catieh with other variables. 171
# Category Description Retrieval information

Percentage of woody vegetation

cover (shrubs and trees with a

radius greater than 0.2m). Each 11 Manual digitization from
m cell represents an averaged orthophoto.

vegetation cover over a 100m

1 Vegetation

radius.
Generated from contour datas
2 Altitude above sea level retrieved from Survey of Israel
Topography (MAPI)
3 Slope (betweed-90 degree Generated from Altitude using

ArcMap 10




Gener&d from Altitude using

4 Aspect (betweef-360degree}p ArcMap 10
. . Generated from slope using
5 Cumulative drainage ArcMap 10
6 *Mean annual precipitation Retrieved from the GIS Lab at
Climate the Hebrew University of
7 *Mean temperature in August Jerusalem
8 *Distance from roads Generated in ArcMap 10
9 *Distance from reintroduction site: Generated in ArcMap 10

10 Anthropogenic

Distance from military bases and

settlements

Generated in ArcMap 10

factors
. - , . Manual digitization from
11 Military training sites (binary) orthophoto.
, Manual digitization from
12 Nature reserve (binary) orthophoto.
Distance from all permanent wate
13 sources including springs and Generated in ArcMap 10
Water leaking pipes
14 *Distance from watering holes Generated in ArcMap 10

Statistical model

We usedthéd Ma x i mu m E n t MAXENY &3.31iKdneal et al. 2009;
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174

Phillips et al. 2006; Phillips and Dudik 2008Ye selected this model out of a large 175

number of possible modekince it was ranked in several comparative studies as on&76

of the most effective models for predictisgeciedistribution on the basis of

presewe-only data(Elith et al. 2006; Elith et al. 2011; Jeschke and Strayer 2008;

Phillips et al. 2006; Radosavljevic and Anderson 20TH¢ MAXENT algorithm

operates on a set of constraints that describes whatuskinom the sample of the

target distributior(i.e., the presence dgtaMaxent characterizes the background

177
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179

180

181

environment with a set of background points from the study region. However, unlike82

thecase obresenceabsence dat#hespecies occurrence at feebackground points 183

is unknown. MAXENT predicts the probability distribution across all cells in the

study aredased on the presence datal, to prevent ovditting, employs maximum
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entropy principles and regularization paramefBrsllips et al. 2006 MAXENT 186
produces two outputs: a probabilistic distribution map describing the establishmenfi87
probability of the species in a specific site and the relative weight of each explanatb@g
variable.Distribution mapof the Asiatic wild assvere obtained by gbying 189
MAXENT models to all cells in the study region, using a logistic link functionto 190
yield ahabitatsuitability index between zero and offhillips and Dudik 2008)We 191
ran the modein three spatial resolutiond0m, 100m and 1km, with 1¢, 1 and 192
10* background pointsespectivelyRecommended values were used for the 193
convergence thresho{d0®), maximum number of iterations (5Q@ndregularization 194
multiplier (1). Response functions were constrainedriy three feature types: 195
Linear, Threshold and Hge. 196

In order to estimate the percent contributtdd@achenvironmental variablen each 197

iteration of the training algorithm, the increasdriegularized gaims added to the 198
contribution of the corresponding variablie.order to estimate thgermutation 199
importanceof each environmental variabl@ turnthe values othe corresponding 200

variable on training presence and background data are randomly permuted. The naidel
is reevaluated on the permuted data, and the resulting diogining AUCis 202
normalizedto percentagesln order to stimateif occurrence dataf thewild assare 203

spatialy autccorrelaed, we calculated Moranlsindex (Moran 1950¥or eachspatial 204

resolution separatefftO0 m, 100 m and 1 km). 205
Model validation 206
We validated the model ugy: 1) MAXENT's five performance measuraad?2) a 207

crossvalidationprocedure MAXENT model generates three gain measures and tw@08
AUC measuresGain measurethe goodness of fit oA models it represents the 209

likelihood of presence records compareddoKkground record@hillips 2005) A 210

11



gain of 16 means that an averageesence location has a relative probability’df e
which is fivetimes higher than an average background pBiegularized training

gainaccounts for the number of predictors in the model to address overfitting;

211

212

213

Unregularized training gairtas no compesation for the number of predictors in the 214

model; andlest gains calculated from presence records held out to test the model 215

AUC is the area under the curve of the receiver operating charact@®ioie) plot.

216

ROC curves are widely used for validati@®Ms and for comparing between models 217

(Elith et al. 2006; Hernandez et al. 2006; Marmion et al. 2008 AUC values
range between 0 and 1, where 1 repregegrfectpredictionability of the modehnd
0.5 represnts prediction that is no better than randdraining AUCcalculates AUC

using the training data; aricest AUCcalculates AUC using the test datacross

218

219

220

221

validation procedure was used to estimate errors around predictive performance o022

held-out dataElith et al. 2011)Occurrence datarerandomly spli into a number of
equaisize groups (folds), and modelsecreated leaving out each fold in turn. The
left-out foldsarethen used for evaluation. Cregalidation uses all of the data for
validation A 10-folds crossvalidation procedure was used foethOm and 100n

models, and a-folds crossvalidation procedure was used for them model.

Results

We recorded a total of 3,232 feces mounds8800 survey unit$10m cells) Feces
mounds were found ih15o0f the 122 sampling sites. The number @funds per site
ranged from 0 td24.Five potentiakxplanatory variables westiminated from the
model (Table 1due to highcorrelationcoefficient(>0.65 or <0.65 Pearson
correlation see Appendix )3 leaving nine variables in the mod€&hreeof these

spatialdata layersnamelyvegetation slope and altitudewere considered dee most

12

223

224

225

226

227

228

229

230

231

232

233

234



influential explanatory variables by the MAXENT algorithatcounting together for 235
~85% of the cumulative relative contribution (Table\®pody vegetation density 236
was found to have the&trongest effeabn the Asiatic wild asdlistribution (Table 2 237
Appendk 4). The response cunagd woody vegetation covéAppendix5) showedan 238
increasing presence of the animals with increasing vegetation cover, lexféling 239
sharplyat thesaturation poin(>72% coverage). Slopeas the second most important 240
variable(Table 2) andvas inversely related taild assdistribution @Appendix5). In 241
slopes steeper than 20 feces mounds were fourAltitude was the third most 242
importantvariable, with12% relativecontribution.The othersix explanatory 243
variablesthat were included in the modehd a lower effect on traistributionof wild 244

ass together accounting for ~15% of the relative contribution to the mddele 2 245

Theperformamre of the three models (10 m, 100, and 1 difiered markedly. 246
The 10 m model yielded theghestaveragedralues in all five performanameasures 247
(Table 3) indicatinghigh predictive capacitylhe 1 km modeyielded thdowest 248

values in all measurewith extremelylow valuesfor Test gain-0.02) andTest AUC 249

(0.67) suggestingoor predictive capacityt this scaleThe crossvalidation 250
procedure revealed high consistency between the different runsstndard 251
deviation values wenelatively low(Table 2 and 3). 252

Table 2. Percent ontributionand germutation importancef thepredictor variables 253
for the10 m resolution MAXENT model for wild asSeeStatistical modesection in 254

the Methods for an explanatioBtandard deviation is shownparentheses 255
Relative Permutation
Explanatory variable contribution in % importancdan %
(= Std) (= Std)
Vegetation 54.5 (0.44) 47.83 (0.93)
Slope 18.04 (0.41) 28.83 (1.31)
Altitude (DEM) 11.97 (0.41) 9.45 (0.73)

13



Distance from all permanent and temporary

wator SOUrces 6.76 (0.26) 6.44 (0.32)
Distance from military bases and settlements 5 (0.21) 4.43 (0.36)
Cumulative drainage 1.66 (0.14) 1.24 (0.15)
Nature reserve 1.39 (0.13) 0.95 (0.18)
Aspect 0.36 (0.07) 0.49 (0.08)
Military training sites 0.33 (0.06) 0.33 (0.09)

256
Table 3. The average MAXENT performanceneasures calculated using afb@ls 257

or a 5folds crossvalidation procedureStandard deviation is shownparentheses 258

Models
Model performance measures 10 m model 100m model 1 km model
Regularized training gain 1.63 (0.01) 1.16 (0.01) 0.64 (0.03)
Unregularized training gain 1.94 (0.01) 1.43 (0.01) 0.97 (0.04)
Test gain 1.82 (0.06) 1.26 (0.12) -0.02 (0.07)
Training AUC 0.93 (0) 0.9 (0) 0.85 (0.01)
Test AUC 0.92 (0.01) 0.88 (0.01) 0.67 (0.02)
259
Occurrence datata 10 m resolutiorhadarelatively low spatial autocorrelation 260

(Moran's lindexof 0.13) while the 100 m and 1 knesolutiors hadhigher values 261

(0.38 and 0.22 respectively). 262

Theprobabilistic distribution mapvas hetergeneous and informative tiievery 263
fine scaleof 10 m and the fine scale of 100 (Rig. 2A-B), andmuchless informative 264
atthe scale of 1 knfFig. 2C). The strong effect of streambeds on $pecies 265
distributionwas apparenat the two finer scaleareasof high probabilityof presence 266
were instreambedsiadig characterized by woody vegetation and moderate terrain267
The high resolution alload detection othe following trendsand phenomena:dt] 268

Possible convenient movement corridors in a matriMrafuitable environmenivhich 269

14



enable landscape connectivity among sikeg.@A). [2] Isolated local sites/areas of 270
high suitability for the wild asghigh-quality habitat "islands") situatedithin broad 271
areas of low quality habitéFig. 4B). [3]. Humaninduced local entities that affect the 272
distribution, e.g., the influence of roads on the quality of proximate halitigtsiC, 273
see discussiofor detail9. [4] Important geomorphologic features that affect the 274

distribution, e.g., streambeds (FD). 275

In contrast to the high variabilityisualizedat fine scalethis mapdid notshow 276
regionaltrends or gradients at the scale of thteidy area. i&es with very highand 277
very low probabilities of wild asgresencevere foundnear each othéhroughout the 278
entire studyarea however in severalreasa spatial continuityof high value sites 279
was noticeable Makhtesh RamoifA), PararstreambedB), theupperpartof Nekaot 280
streambedC), andthe Lotz potholes (Borot LotZP) (Fig. 3). These areas have the 281
potential to serve as activity cerdéor the populationA spatialcontinuwum of sites 282

with low suitability for the Asiatic wild asalsowas discernablé-ig. 3, pointsE-H). 283

15



284
Figure 2: A comparison between the northern regions of tiebabilistic distribution 285

mays of the three models. (A) 10 resolutionmodel, (B) 100 nresolutionmodel, 286
and(C) 1 kmresolutionmodel. 287

16



288

Figure 3: Probabilistic distribution magof a10 mresolutionmodelfor the Asiatic 289
wild ass in the Negewotential wild ass activity centers: Makhtesh Ramfoy Paran 290
streambedR), the upper part of Nekarot streamb&)l &nd the Lotz potholes (Borot 291
Lotz) (D). A spatial continuum of sites with low suitability: the Paran Stream Estuar392
(E), the region south of Mount Karkor®)( , B e 6 e G), e thelEhstern part 293

of Makhtesh RamorH). Stars indicate reintroduction et 294

295
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296

Figure 4. Detecting landscape features on the higgolution map: (a) Potential 297
movement corridors, (b) Isolated habitat patches, (c) Important geomorphologic 298
features, (d) Anthropogenic effects on habitat quality (roads effect incremsiside 299
vegetation). Colors represent predicted habitat suitability: from green, low suitability00

to red high suitability. 301
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