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Abstract 17 

Species Distribution models (SDMs) are often limited by the use of coarse-resolution 18 

environmental variables and by the number of observations needed to calibrate SDMs. 19 

This is particularly true in the case of elusive animals. Here, we developed a SDM by 20 

combining three elements: a database of explanatory variables, mapped at a fine 21 

resolution; a systematic sampling scheme; and an intensive survey of indirect 22 

observations. Using MaxEnt, we developed the SDM for the population of the Asiatic 23 

wild ass (Equus hemionus), a rare and elusive species, at three spatial scales: 10, 100, 24 

and 1000 m per pixel. We used indirect observations of feces mounds. We constructed 25 

14 layers of explanatory variables, in five categories: water, topography, biotic 26 

conditions, climatic variables and anthropogenic variables. Woody vegetation cover 27 

and slopes were found to have the strongest effect on the wild ass distribution and 28 

were included as the main predictors in the SDM. Model validation revealed that an 29 

intensive survey of feces mounds and high-resolution predictor layers resulted in a 30 

highly accurate and informative SDM. Fine-grain (10 m and 100 m) SDMs can be 31 

utilized to: 1) characterize the variables influencing species distribution at high 32 

resolution and local scale, including anthropogenic effects and geomorphologic 33 

features; 2) detect potential population activity centers; 3) locate potential corridors of 34 

movement and possible isolated habitat patches. Such information may be useful for 35 

the conservation efforts of the Asiatic wild ass. This approach could be applied to 36 

other elusive species, particularly large mammals.  37 

Keywords: Equus hemionus; habitat preferences; Faeces; MAXENT ; 38 

SDM; spatially explicit model. 39 
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Introduction  41 

Spatially explicit Species Distribution Models (SDMs) are commonly used for 42 

purposes of conservation, environmental planning, and wildlife management 43 

programs (Guisan et al. 2013). SDM models quantify the relationships between the 44 

distribution and demography of a species and the environment (Peterson 2011). SDMs 45 

allow us to study species distribution in large areas and even in remote habitats, where 46 

logistic and financial restrictions preclude direct observations (Duff and Morrell 47 

2007). They may be particularly useful for assessing the success of reintroduction 48 

activities (Manel et al. 1999; Manel et al. 2001). Understanding habitat characteristics 49 

and distribution determinants of reintroduced species is important in order to ensure 50 

the protection of landscape components that are critical for the long-term persistence 51 

of these species in the wild. 52 

The use of environmental variables to explain and predict species distribution is not 53 

trivial, since these relationships are complex, and a large number of variables are 54 

involved (Guisan and Zimmermann 2000; Radosavljevic and Anderson 2014). It is 55 

well known that the variables that affect the distribution of a species change with the 56 

change of observation scale (Blank and Carmel 2012; Crawley and Harral 2001; Kent 57 

et al. 2011; Stauffer and Best 1986). Coarse-scale distribution models may be 58 

preferred in, for example, bio-geographic studies. In contrast, fine-scale distribution 59 

models can depict local scale phenomena such as essential corridors and animal 60 

passages and effects of roads and rivers, which coarse-scale models cannot detect. 61 

Thus,  fine-scale distribution models may  be preferable for conservation planning and 62 

management (Hess et al. 2006). Yet, in most studies, the selection of resolution is a 63 

consequence of the availability and quality of data pertaining to the specific study 64 

area, which is typically the limiting factor in distribution studies (Elith et al. 2006; 65 
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Hess et al. 2006). Data layers used in such studies are typically derived from global 66 

databases where 1 km2 is considered the finest resolution. 67 

Presence/absence information is thought to be preferred to presence-only information 68 

in SDMs. However, presence/absence information is more difficult or impossible to 69 

obtain than Presence-only information (Kent et al. 2011; Pearce and Boyce 2006; 70 

Tsoar et al. 2007). However, presence-only data may be subject to large errors due to 71 

small sample size and biased samples (Graham et al. 2004; Phillips and Elith 2013). A 72 

systematic data-collection survey, designed to collect data at precise locations should 73 

largely reduce these biases. 74 

Indirect observations, and in particular dung surveys, are common non-invasive 75 

approaches for obtaining information about the presence of species and habitat 76 

selection. They are particularly useful when the studied species is hard to find due to 77 

its elusive behavior, rarity, or habitat (Fernandez et al. 2006; Vina et al. 2010). The 78 

use of indirect observations in SDMs requires a clear connection between the 79 

presence of the species and the feces (Gallant et al. 2007; Kays et al. 2008; Perinchery 80 

et al. 2011). Systematic dung survey, conducted in sites selected to represent the 81 

entire range of environmental conditions in a region, can be an appropriate solution to 82 

sampling-bias problems (Fernandez et al. 2006; Norris 2014; Vina et al. 2010). 83 

Here, we developed a species distribution model for the population of the Asiatic 84 

Wild Ass (Equus hemionus), a rare and elusive species that was reintroduced into the 85 

Negev Desert in Israel. We combined three elements in order to overcome the 86 

obstacles in developing SDMs: a database of spatial layers of explanatory variables, 87 

mapped at a very fine resolution; a systematic sampling scheme; and an intensive 88 

survey of indirect observations, presence of feces mounds. This approach led to 89 

important insights regarding the habitat preferences of this species. 90 
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Methods 91 

Study species 92 

The Asiatic wild ass is an endangered species (Moehlman et al. 2008). In the past, the 93 

Syrian wild ass (E. h. hemippus) subspecies was found in the Middle East, and 94 

became extinct in the wild at the beginning of the 20th century (Groves 1986; Saltz et 95 

al. 2000; Schulz and Kaiser 2013). In 1968, a breeding core was established in Israel 96 

using individuals from the subspecies E.h. onager and E. h. kulan brought from Iran 97 

and Turkmenistan, respectively. In 1982 the Israel Nature and Parks Authority 98 

initiated a reintroduction program of the Asiatic wild ass (from the breeding core of 99 

these two subspecies (Saltz et al. 2000). The first individuals were released near Ein- 100 

Saharonim in Makhtesh Ramon (Fig. 1). By 1993, three additional releases were 101 

conducted at this site and two more in the Paran streambed (Saltz and Rubenstein 102 

1995). A total of 38 individuals were released. The wild ass population expanded its 103 

range in the Negev Desert and the Arava valley (Saltz and Rubenstein 1995), and the 104 

current population is estimated at more than 250 individuals (Renan et al. 2015). 105 

Study area 106 

The study area extends over approximately 3,000 km2 in the central part of the Negev 107 

Desert (Fig. 1). The area is arid and characterized by high daytime temperatures (on 108 

average 33°C) and relatively low night-time temperatures (on average 12°C). Mean 109 

annual precipitation ranges between 30 mm and 150 mm (Stern et al. 1986). Elevation 110 

ranges between 50-1033 m, and the area has a complex geomorphological structure. 111 

The bedrock is mainly hard limestone, resulting in a cliffy landscape and leveled 112 

floodplains. The majority of the area is drained by two main ephemeral streambeds 113 

(wadis) ï Nekarot and Paran. There are several latitudinal geological faults in the 114 
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region that create a steep terraced landscape. Flash floods are a common phenomenon 115 

after rain events. The flash floods fill water holes in the streambeds, which may hold 116 

for a few months. There are very few natural water sources that provide water year- 117 

round. Vegetation is mostly limited to streams and their surroundings and generally 118 

located on the banks. Vegetation in the streams is mostly of a Saharo-Arabian origin, 119 

with a Sudanian component in the Arava (Danin 1999). It is dominated by three native 120 

Acacia tree species, Acacia raddiana, A. tortilis, and A. pachyceras.  121 
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 122 

Figure 1. The study region, reintroduction and sampling sites in the Negev Desert, 123 

Israel. 124 

 125 

Data collection 126 

We selected 122 sampling sites using an approximate systematic sampling scheme 127 

(Fig. 1) in order to capture the full  range of conditions found in the study region. To 128 
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ensure accurate representation of the environmental conditions in the sampling sites, 129 

we stratified the sampling locations according to three environmental parameters: 130 

distance from permanent water sources, altitude, and mean temperature of the hottest 131 

month. Based on our prior knowledge of the study species and a literature review 132 

(Henley and Ward 2006; Henley et al. 2007; Saltz and Rubenstein 1995; Saltz et al. 133 

1999), we considered these environmental variables to have a high potential for 134 

explaining wild ass distribution. These variables were represented by GIS layers and 135 

combined into a three banded composite, on which we performed K-means 136 

unsupervised classification using ERDAS IMAGINE V 9.1. The objective of this 137 

classification was to divide the study region into polygons with similar combinations 138 

of these variables (Carmel and Stoller-Cavari 2006). The 122 sampling sites were 139 

systematically distributed among these polygons. 140 

In each sampling site we conducted a feces survey. Fecal droppings of wild ass 141 

constitute a straightforward indicator for species presence because they are deposited 142 

frequently, and remain visible in the desert environment for several months (up to 143 

about a year). The survey in each site was composed of three 500 m belt transects 144 

arranged as an equilateral triangle with a total length of 1500 m, and divided into 150 145 

survey units of 10X10 m per site. One of the triangle sides was always laid on a dry 146 

river-bed nearest to the point defined as the center of the sampling site. We recorded 147 

observations at a distance of 5 m on either side of the transect, where detection 148 

probability of feces was 100%. The exact location of feces mound (droppings as well 149 

as dung piles) observed on the transect were recorded using a GPS at a spatial 150 

accuracy of 4 m. The number of feces mounds within each 10 m pixel was recorded. 151 

During January 2009 to June 2009 we surveyed 122 sites and explored 150 units per 152 
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site, with a total sampled area of 183 ha. For the ópresence-onlyô SDM, we classified 153 

each unit as ópresentô if one or more feces mounds were found in that unit. 154 

Data analysis 155 

Explanatory variables 156 

We devoted extensive efforts to create a high resolution digital data set of 157 

environmental variables. We generated 14 spatial layers (Table 1), from which the 158 

model predictors were derived. These layers pertain to five main categories (Table 1): 159 

vegetation (one variable), topography (4), climate (2), anthropogenic variables (5), 160 

and distance from water (2 variables). The vegetation layer was derived from a 161 

complex processing of an aerial photo (Appendix 1). Topography was derived from a 162 

DEM of the area, at an original resolution of 10 m. Climate layers had an original 163 

resolution of 1 km, and were up-scaled to a 10 m resolution. Distance toðlayers were 164 

constructed using Euclidean distance to specific elements on the map at an original 165 

resolution of 10 m. In order to reduce multicollinearity, correlation coefficients were 166 

calculated between each pair of variables; in pairs with a high correlation (>0.65 or <- 167 

0.65, Pearson correlation), one of the variables was eliminated from the model. A map 168 

of each explanatory variable appears in Appendix 2. 169 

Table 1. Predictors used in the distribution model of wild ass. Stars (* ) indicate 170 

variables eliminated from the model due to high correlation with other variables. 171 

# Category Description Retrieval information 

1 Vegetation  

Percentage of woody vegetation 

cover (shrubs and trees with a 

radius greater than 0.2m). Each 10 

m cell represents an averaged 

vegetation cover over a 100m 

radius. 

Manual digitization from 

orthophoto. 

2 

Topography 

Altitude above sea level 

Generated from contour dataset 

retrieved from Survey of Israel 

(MAPI) 

3 Slope (between 0-90 degrees) 
Generated from Altitude using 

ArcMap 10 



 

 

10 

 

4 Aspect (between 0-360 degrees) 
Generated from Altitude using 

ArcMap 10 

5 Cumulative drainage 
Generated from slope using 

ArcMap 10 

6 
Climate 

*Mean annual precipitation  Retrieved from the GIS Lab at 

the Hebrew University of 

Jerusalem 7 *Mean temperature in August 

8 

Anthropogenic 

factors 

*Distance from roads Generated in ArcMap 10 

9 *Distance from reintroduction sites Generated in ArcMap 10 

10 
Distance from military bases and 

settlements 
Generated in ArcMap 10 

11 Military training sites (binary) 
Manual digitization from 

orthophoto. 

12 Nature reserve (binary) 
Manual digitization from 

orthophoto. 

13 
Water 

Distance from all permanent water 

sources including springs and 

leaking pipes 

Generated in ArcMap 10 

14 *Distance from watering holes Generated in ArcMap 10 

 172 

Statistical model 173 

We used the ñMaximum Entropyò model MAXENT V3.3.1 (Kumar et al. 2009; 174 

Phillips et al. 2006; Phillips and Dudik 2008). We selected this model out of a large 175 

number of possible models, since it was ranked in several comparative studies as one 176 

of the most effective models for predicting species distribution on the basis of 177 

presence-only data (Elith et al. 2006; Elith et al. 2011; Jeschke and Strayer 2008; 178 

Phillips et al. 2006; Radosavljevic and Anderson 2014). The MAXENT algorithm 179 

operates on a set of constraints that describes what is known from the sample of the 180 

target distribution (i.e., the presence data). Maxent characterizes the background 181 

environment with a set of background points from the study region. However, unlike 182 

the case of presenceïabsence data, the species occurrence at these background points 183 

is unknown. MAXENT predicts the probability distribution across all cells in the 184 

study area based on the presence data and, to prevent over-fitting, employs maximum 185 
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entropy principles and regularization parameters (Phillips et al. 2006). MAXENT 186 

produces two outputs: a probabilistic distribution map describing the establishment 187 

probability of the species in a specific site and the relative weight of each explanatory 188 

variable. Distribution maps of the Asiatic wild ass were obtained by applying 189 

MAXENT models to all cells in the study region, using a logistic link function to 190 

yield a habitat suitability index between zero and one (Phillips and Dudik 2008). We 191 

ran the model in three spatial resolutions: 10 m, 100 m and 1 km, with 106, 105 and 192 

104 background points respectively. Recommended values were used for the 193 

convergence threshold (10-5), maximum number of iterations (500), and regularization 194 

multiplier (1). Response functions were constrained to only three feature types: 195 

Linear, Threshold and Hinge. 196 

In order to estimate the percent contribution of each environmental variable, in each 197 

iteration of the training algorithm, the increase in Regularized gain is added to the 198 

contribution of the corresponding variable. In order to estimate the permutation 199 

importance of each environmental variable, in turn the values of the corresponding 200 

variable on training presence and background data are randomly permuted. The model 201 

is reevaluated on the permuted data, and the resulting drop in Training AUC is 202 

normalized to percentages.  In order to estimate if occurrence data of the wild ass are 203 

spatially autocorrelated, we calculated Moran's I Index (Moran 1950) for each spatial 204 

resolution separately (10 m, 100 m and 1 km).  205 

Model validation 206 

We validated the model using: 1) MAXENT's five performance measures and 2) a 207 

cross-validation procedure.  MAXENT model generates three gain measures and two 208 

AUC measures.  Gain measures the goodness of fit of a models, it represents the 209 

likelihood of presence records compared to background records (Phillips 2005). A 210 
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gain of 1.6 means that an average presence location has a relative probability of e1.6, 211 

which is five times higher than an average background point. Regularized training 212 

gain accounts for the number of predictors in the model to address overfitting; 213 

Unregularized training gain has no compensation for the number of predictors in the 214 

model; and Test gain is calculated from presence records held out to test the model. 215 

AUC is the area under the curve of the receiver operating characteristic (ROC) plot. 216 

ROC curves are widely used for validating SDMs and for comparing between models 217 

(Elith et al. 2006; Hernandez et al. 2006; Marmion et al. 2009). The AUC values 218 

range between 0 and 1, where 1 represents perfect prediction ability of the model and 219 

0.5 represents prediction that is no better than random. Training AUC calculates AUC 220 

using the training data; and Test AUC calculates AUC using the test data. A cross- 221 

validation procedure was used to estimate errors around predictive performance on 222 

held-out data (Elith et al. 2011). Occurrence data are randomly split into a number of 223 

equal-size groups (folds), and models are created leaving out each fold in turn. The 224 

left-out folds are then used for evaluation. Cross-validation uses all of the data for 225 

validation. A 10-folds cross-validation procedure was used for the 10 m and 100 m 226 

models, and a 5-folds cross-validation procedure was used for the 1 km model.  227 

Results 228 

We recorded a total of 3,232 feces mounds in 18,300 survey units (10 m cells). Feces 229 

mounds were found in 115 of the 122 sampling sites. The number of mounds per site 230 

ranged from 0 to 124. Five potential explanatory variables were eliminated from the 231 

model (Table 1) due to high correlation coefficient (>0.65 or <-0.65, Pearson 232 

correlation, see Appendix 3), leaving nine variables in the model. Three of these 233 

spatial data layers, namely vegetation, slope, and altitude, were considered as the most 234 
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influential explanatory variables by the MAXENT algorithm, accounting together for 235 

~85% of the cumulative relative contribution (Table 2). Woody vegetation density 236 

was found to have the strongest effect on the Asiatic wild ass distribution (Table 2; 237 

Appendix 4). The response curve of woody vegetation cover (Appendix 5) showed an 238 

increasing presence of the animals with increasing vegetation cover, leveling off 239 

sharply at the saturation point (>72% coverage). Slope was the second most important 240 

variable (Table 2) and was inversely related to wild ass distribution (Appendix 5). In 241 

slopes steeper than 20°, no feces mounds were found. Altitude was the third most 242 

important variable, with 12% relative contribution. The other six explanatory 243 

variables that were included in the model had a lower effect on the distribution of wild 244 

ass, together accounting for ~15% of the relative contribution to the model, Table 2. 245 

The performance of the three models (10 m, 100, and 1 km) differed markedly. 246 

The 10 m model yielded the highest averaged values in all five performance measures 247 

(Table 3), indicating high predictive capacity. The 1 km model yielded the lowest 248 

values in all measures, with extremely low values for Test gain (-0.02) and Test AUC 249 

(0.67), suggesting poor predictive capacity at this scale. The cross-validation 250 

procedure revealed high consistency between the different runs, since standard 251 

deviation values were relatively low (Table 2 and 3).  252 

Table 2. Percent contribution and permutation importance of the predictor variables 253 

for the 10 m resolution MAXENT model for wild ass. See Statistical model section in 254 

the Methods for an explanation. Standard deviation is shown in parentheses. 255 

Explanatory variable 

Relative 

contribution in % 

 (± Std) 

Permutation 

importance in %  

(± Std) 

Vegetation 54.5 (0.44) 47.83 (0.93) 

Slope 18.04 (0.41) 28.83 (1.31) 

Altitude (DEM) 11.97 (0.41) 9.45 (0.73) 
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Distance from all permanent and temporary 

water sources 
6.76 (0.26) 6.44 (0.32) 

Distance from military bases and settlements 5 (0.21) 4.43 (0.36) 

Cumulative drainage 1.66 (0.14) 1.24 (0.15) 

Nature reserve 1.39 (0.13) 0.95 (0.18) 

Aspect 0.36 (0.07) 0.49 (0.08) 

Military training sites 0.33 (0.06) 0.33 (0.09) 

 256 

Table 3. The averaged MAXENT performance measures calculated using a 10-folds 257 

or a 5-folds cross-validation procedure. Standard deviation is shown in parentheses.  258 

  Models 

Model performance measures: 10 m model 100 m model 1 km model 

Regularized training gain 1.63 (0.01) 1.16 (0.01) 0.64 (0.03) 

Unregularized training gain 1.94 (0.01) 1.43 (0.01) 0.97 (0.04) 

Test gain 1.82 (0.06) 1.26 (0.12) -0.02 (0.07) 

Training AUC 0.93 (0) 0.9 (0) 0.85 (0.01) 

Test AUC 0.92 (0.01) 0.88 (0.01) 0.67 (0.02) 

 259 

Occurrence data at a 10 m resolution had a relatively low spatial autocorrelation 260 

(Moran's I Index of 0.13), while the 100 m and 1 km resolutions had higher values 261 

(0.38 and 0.22 respectively). 262 

The probabilistic distribution map was heterogeneous and informative at the very 263 

fine scale of 10 m, and the fine scale of 100 m (Fig. 2A-B), and much less informative 264 

at the scale of 1 km (Fig. 2C). The strong effect of streambeds on the species 265 

distribution was apparent at the two finer scales: areas of high probability of presence 266 

were in streambeds (wadis) characterized by woody vegetation and moderate terrain. 267 

The high resolution allowed detection of the following trends and phenomena at: [1] 268 

Possible convenient movement corridors in a matrix of unsuitable environment, which 269 
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enable landscape connectivity among sites (Fig. 4A). [2] Isolated local sites/areas of 270 

high suitability for the wild ass (high-quality habitat "islands") situated within broad 271 

areas of low quality habitat (Fig. 4B). [3]. Human-induced local entities that affect the 272 

distribution, e.g., the influence of roads on the quality of proximate habitats (Fig. 4C, 273 

see discussion for details). [4] Important geomorphologic features that affect the 274 

distribution, e.g., streambeds (Fig. 4D). 275 

 In contrast to the high variability visualized at fine scale, this map did not show 276 

regional trends or gradients at the scale of the study area. Sites with very high and 277 

very low probabilities of wild ass presence were found near each other throughout the 278 

entire study area; however, in several areas, a spatial continuity of high value sites 279 

was noticeable: Makhtesh Ramon (A), Paran streambed (B), the upper part of Nekarot 280 

streambed (C), and the Lotz potholes (Borot Lotz) (D) (Fig. 3). These areas have the 281 

potential to serve as activity centers for the population. A spatial continuum of sites 282 

with low suitability for the Asiatic wild ass also was discernable (Fig. 3, points E-H). 283 
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 284 

Figure 2: A comparison between the northern regions of the probabilistic distribution 285 

maps of the three models. (A) 10 m resolution model, (B) 100 m resolution model, 286 

and (C) 1 km resolution model.  287 
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 288 

Figure 3: Probabilistic distribution maps of a 10 m resolution model for the Asiatic 289 

wild ass in the Negev. Potential wild ass activity centers: Makhtesh Ramon (A), Paran 290 

streambed (B), the upper part of Nekarot streambed (C) and the Lotz potholes (Borot 291 

Lotz) (D). A spatial continuum of sites with low suitability: the Paran Stream Estuary 292 

(E), the region south of Mount Karkom (F), Beôer Menuha (G), and the Eastern part 293 

of Makhtesh Ramon (H). Stars indicate reintroduction sites. 294 

  295 
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 296 

Figure 4. Detecting landscape features on the high-resolution map: (a) Potential 297 

movement corridors, (b) Isolated habitat patches, (c) Important geomorphologic 298 

features, (d) Anthropogenic effects on habitat quality (roads effect increased roadside 299 

vegetation). Colors represent predicted habitat suitability: from green, low suitability, 300 

to red, high suitability. 301 


