High-resolution species-distribution model based on systematic	1
sampling and indirect observations: a case-study of the wild ass in	2
the Negev Desert	3
	4
Oded Nezer, Department of Environmental Engineering, Technion – Israel Institute of	5
Technology. <u>nezer.oded@gmail.com</u>	6
Shirli Bar-David, Mitrani Department of Desert Ecology, Jacob Blaustein Institutes	7
for Desert Research, Ben Gurion University of the Negev. shirlibd@bgu.ac.il	8
Tomer Gueta, Department of Environmental Engineering, Technion – Israel Institute	9
of Technology, Haifa 32000, Israel. tomer.gu@gmail.com	10
Yohay Carmel*, Department of Environmental Engineering, Technion – Israel	11
Institute of Technology, Haifa 32000, Israel. yohay@technion.ac.il. Phone: 972-4-	12
8292609.	13
	14
*Corresponding author.	15
	16

Abstract

Species Distribution models (SDMs) are often limited by the use of coarse-resolution	18
environmental variables and by the number of observations needed to calibrate SDMs.	19
This is particularly true in the case of elusive animals. Here, we developed a SDM by	20
combining three elements: a database of explanatory variables, mapped at a fine	21
resolution; a systematic sampling scheme; and an intensive survey of indirect	22
observations. Using MaxEnt, we developed the SDM for the population of the Asiatic	23
wild ass (Equus hemionus), a rare and elusive species, at three spatial scales: 10, 100,	24
and 1000 m per pixel. We used indirect observations of feces mounds. We constructed	25
14 layers of explanatory variables, in five categories: water, topography, biotic	26
conditions, climatic variables and anthropogenic variables. Woody vegetation cover	27
and slopes were found to have the strongest effect on the wild ass distribution and	28
were included as the main predictors in the SDM. Model validation revealed that an	29
intensive survey of feces mounds and high-resolution predictor layers resulted in a	30
highly accurate and informative SDM. Fine-grain (10 m and 100 m) SDMs can be	31
utilized to: 1) characterize the variables influencing species distribution at high	32
resolution and local scale, including anthropogenic effects and geomorphologic	33
features; 2) detect potential population activity centers; 3) locate potential corridors of	34
movement and possible isolated habitat patches. Such information may be useful for	35
the conservation efforts of the Asiatic wild ass. This approach could be applied to	36
other elusive species, particularly large mammals.	37

Keywords: Equus hemionus; habitat preferences; Faeces; MAXENT; SDM; spatially explicit model.

Introduction

Spatially explicit Species Distribution Models (SDMs) are commonly used for	42
purposes of conservation, environmental planning, and wildlife management	43
programs (Guisan et al. 2013). SDM models quantify the relationships between the	44
distribution and demography of a species and the environment (Peterson 2011). SDMs	45
allow us to study species distribution in large areas and even in remote habitats, where	46
logistic and financial restrictions preclude direct observations (Duff and Morrell	47
2007). They may be particularly useful for assessing the success of reintroduction	48
activities (Manel et al. 1999; Manel et al. 2001). Understanding habitat characteristics	49
and distribution determinants of reintroduced species is important in order to ensure	50
the protection of landscape components that are critical for the long-term persistence	51
of these species in the wild.	52

The use of environmental variables to explain and predict species distribution is not 53 trivial, since these relationships are complex, and a large number of variables are 54 involved (Guisan and Zimmermann 2000; Radosavljevic and Anderson 2014). It is 55 well known that the variables that affect the distribution of a species change with the 56 change of observation scale (Blank and Carmel 2012; Crawley and Harral 2001; Kent 57 et al. 2011; Stauffer and Best 1986). Coarse-scale distribution models may be 58 preferred in, for example, bio-geographic studies. In contrast, fine-scale distribution 59 models can depict local scale phenomena such as essential corridors and animal 60 passages and effects of roads and rivers, which coarse-scale models cannot detect. 61 Thus, fine-scale distribution models may be preferable for conservation planning and 62 management (Hess et al. 2006). Yet, in most studies, the selection of resolution is a 63 consequence of the availability and quality of data pertaining to the specific study 64 area, which is typically the limiting factor in distribution studies (Elith et al. 2006; 65

Hess et al. 2006). Data layers used in such studies are typically derived from global	66
databases where 1 km^2 is considered the finest resolution.	67
Presence/absence information is thought to be preferred to presence-only information	68
in SDMs. However, presence/absence information is more difficult or impossible to	69
obtain than Presence-only information (Kent et al. 2011; Pearce and Boyce 2006;	70
Tsoar et al. 2007). However, presence-only data may be subject to large errors due to	71
small sample size and biased samples (Graham et al. 2004; Phillips and Elith 2013). A	72
systematic data-collection survey, designed to collect data at precise locations should	73
largely reduce these biases.	74
Indirect observations, and in particular dung surveys, are common non-invasive	75
approaches for obtaining information about the presence of species and habitat	76
selection. They are particularly useful when the studied species is hard to find due to	77
its elusive behavior, rarity, or habitat (Fernandez et al. 2006; Vina et al. 2010). The	78
use of indirect observations in SDMs requires a clear connection between the	79
presence of the species and the feces (Gallant et al. 2007; Kays et al. 2008; Perinchery	80
et al. 2011). Systematic dung survey, conducted in sites selected to represent the	81
entire range of environmental conditions in a region, can be an appropriate solution to	82
sampling-bias problems (Fernandez et al. 2006; Norris 2014; Vina et al. 2010).	83

Here, we developed a species distribution model for the population of the Asiatic84Wild Ass (*Equus hemionus*), a rare and elusive species that was reintroduced into the85Negev Desert in Israel. We combined three elements in order to overcome the86obstacles in developing SDMs: a database of spatial layers of explanatory variables,87mapped at a very fine resolution; a systematic sampling scheme; and an intensive88survey of indirect observations, presence of feces mounds. This approach led to89important insights regarding the habitat preferences of this species.90

Methods

Study species

91

92

The Asiatic wild ass is an endangered species (Moehlman et al. 2008). In the past, the	93
Syrian wild ass (E. h. hemippus) subspecies was found in the Middle East, and	94
became extinct in the wild at the beginning of the 20 th century (Groves 1986; Saltz et	95
al. 2000; Schulz and Kaiser 2013). In 1968, a breeding core was established in Israel	96
using individuals from the subspecies E.h. onager and E. h. kulan brought from Iran	97
and Turkmenistan, respectively. In 1982 the Israel Nature and Parks Authority	98
initiated a reintroduction program of the Asiatic wild ass (from the breeding core of	99
these two subspecies (Saltz et al. 2000). The first individuals were released near Ein-	100
Saharonim in Makhtesh Ramon (Fig. 1). By 1993, three additional releases were	101
conducted at this site and two more in the Paran streambed (Saltz and Rubenstein	102
1995). A total of 38 individuals were released. The wild ass population expanded its	103
range in the Negev Desert and the Arava valley (Saltz and Rubenstein 1995), and the	104
current population is estimated at more than 250 individuals (Renan et al. 2015).	105

Study area

106

The study area extends over approximately 3,000 km² in the central part of the Negev 107 Desert (Fig. 1). The area is arid and characterized by high daytime temperatures (on 108 average 33°C) and relatively low night-time temperatures (on average 12°C). Mean 109 annual precipitation ranges between 30 mm and 150 mm (Stern et al. 1986). Elevation 110 ranges between 50-1033 m, and the area has a complex geomorphological structure. 111 The bedrock is mainly hard limestone, resulting in a cliffy landscape and leveled 112 floodplains. The majority of the area is drained by two main ephemeral streambeds 113 (wadis) - Nekarot and Paran. There are several latitudinal geological faults in the 114

region that create a steep terraced landscape. Flash floods are a common phenomenon	115
after rain events. The flash floods fill water holes in the streambeds, which may hold	116
for a few months. There are very few natural water sources that provide water year-	117
round. Vegetation is mostly limited to streams and their surroundings and generally	118
located on the banks. Vegetation in the streams is mostly of a Saharo-Arabian origin,	119
with a Sudanian component in the Arava (Danin 1999). It is dominated by three native	120
Acacia tree species, Acacia raddiana, A. tortilis, and A. pachyceras.	121

Figure 1. The study region, reintroduction and sampling sites in the Negev Desert, Israel.

Data collection

We selected 122 sampling sites using an approximate systematic sampling scheme127(Fig. 1) in order to capture the full range of conditions found in the study region. To128

ensure accurate representation of the environmental conditions in the sampling sites, 129 we stratified the sampling locations according to three environmental parameters: 130 distance from permanent water sources, altitude, and mean temperature of the hottest 131 month. Based on our prior knowledge of the study species and a literature review 132 (Henley and Ward 2006; Henley et al. 2007; Saltz and Rubenstein 1995; Saltz et al. 133 1999), we considered these environmental variables to have a high potential for 134 explaining wild ass distribution. These variables were represented by GIS layers and 135 combined into a three banded composite, on which we performed K-means 136 unsupervised classification using ERDAS IMAGINE V 9.1. The objective of this 137 classification was to divide the study region into polygons with similar combinations 138 of these variables (Carmel and Stoller-Cavari 2006). The 122 sampling sites were 139 systematically distributed among these polygons. 140 In each sampling site we conducted a feces survey. Fecal droppings of wild ass 141 constitute a straightforward indicator for species presence because they are deposited 142 frequently, and remain visible in the desert environment for several months (up to 143 about a year). The survey in each site was composed of three 500 m belt transects 144 arranged as an equilateral triangle with a total length of 1500 m, and divided into 150 145 survey units of 10X10 m per site. One of the triangle sides was always laid on a dry 146 river-bed nearest to the point defined as the center of the sampling site. We recorded 147 observations at a distance of 5 m on either side of the transect, where detection 148 probability of feces was 100%. The exact location of feces mound (droppings as well 149 as dung piles) observed on the transect were recorded using a GPS at a spatial 150 accuracy of 4 m. The number of feces mounds within each 10 m pixel was recorded. 151 During January 2009 to June 2009 we surveyed 122 sites and explored 150 units per 152

site, with a total sampled area of 183 ha. For the 'presence-only' SDM, we classified	153
each unit as 'present' if one or more feces mounds were found in that unit.	154
Data analysis	155
Explanatory variables	156
We devoted extensive efforts to create a high resolution digital data set of	157
environmental variables. We generated 14 spatial layers (Table 1), from which the	158
model predictors were derived. These layers pertain to five main categories (Table 1):	159
vegetation (one variable), topography (4), climate (2), anthropogenic variables (5),	160
and distance from water (2 variables). The vegetation layer was derived from a	161
complex processing of an aerial photo (Appendix 1). Topography was derived from a	162
DEM of the area, at an original resolution of 10 m. Climate layers had an original	163
resolution of 1 km, and were up-scaled to a 10 m resolution. Distance to-layers were	164
constructed using Euclidean distance to specific elements on the map at an original	165
resolution of 10 m. In order to reduce multicollinearity, correlation coefficients were	166
calculated between each pair of variables; in pairs with a high correlation (>0.65 or <-	167
0.65, Pearson correlation), one of the variables was eliminated from the model. A map	168
of each explanatory variable appears in Appendix 2.	169
Table 1 . Predictors used in the distribution model of wild ass. Stars (*) indicate	170

variables eliminated from the model due to high correlation with other variables.	171
---	-----

#	Category	Description	Retrieval information
1	Vegetation	Percentage of woody vegetation cover (shrubs and trees with a radius greater than 0.2m). Each 10 m cell represents an averaged vegetation cover over a 100m radius.	Manual digitization from orthophoto.
2	Topography	Altitude above sea level	Generated from contour dataset retrieved from Survey of Israel (MAPI)
3		Slope (between 0-90 degrees)	Generated from Altitude using ArcMap 10

4		Aspect (between 0-360 degrees)	Generated from Altitude using ArcMap 10
5		Cumulative drainage	Generated from slope using ArcMap 10
6	Climate	*Mean annual precipitation	Retrieved from the GIS Lab at the Hebrew University of
7	Chinate	*Mean temperature in August	Jerusalem
8	Anthropogenic factors Water	*Distance from roads	Generated in ArcMap 10
9		*Distance from reintroduction sites	Generated in ArcMap 10
10		Distance from military bases and settlements	Generated in ArcMap 10
11		Military training sites (binary)	Manual digitization from orthophoto.
12		Nature reserve (binary)	Manual digitization from orthophoto.
13		Distance from all permanent water sources including springs and leaking pipes	Generated in ArcMap 10
14		*Distance from watering holes	Generated in ArcMap 10

	172
Statistical model	173
We used the "Maximum Entropy" model MAXENT V3.3.1 (Kumar et al. 2009;	174
Phillips et al. 2006; Phillips and Dudik 2008). We selected this model out of a large	175
number of possible models, since it was ranked in several comparative studies as one	176
of the most effective models for predicting species distribution on the basis of	177
presence-only data (Elith et al. 2006; Elith et al. 2011; Jeschke and Strayer 2008;	178
Phillips et al. 2006; Radosavljevic and Anderson 2014). The MAXENT algorithm	179
operates on a set of constraints that describes what is known from the sample of the	180
target distribution (i.e., the presence data). Maxent characterizes the background	181
environment with a set of background points from the study region. However, unlike	182
the case of presence-absence data, the species occurrence at these background points	183
is unknown. MAXENT predicts the probability distribution across all cells in the	184
study area based on the presence data and, to prevent over-fitting, employs maximum	185

entropy principles and regularization parameters (Phillips et al. 2006). MAXENT	186
produces two outputs: a probabilistic distribution map describing the establishment	187
probability of the species in a specific site and the relative weight of each explanatory	188
variable. Distribution maps of the Asiatic wild ass were obtained by applying	189
MAXENT models to all cells in the study region, using a logistic link function to	190
yield a habitat suitability index between zero and one (Phillips and Dudik 2008). We	191
ran the model in three spatial resolutions: 10 m, 100 m and 1 km, with 10^6 , 10^5 and	192
10^4 background points respectively. Recommended values were used for the	193
convergence threshold (10 ⁻⁵), maximum number of iterations (500), and regularization	194
multiplier (1). Response functions were constrained to only three feature types:	195
Linear, Threshold and Hinge.	196
In order to estimate the percent contribution of each environmental variable, in each	197
iteration of the training algorithm, the increase in Regularized gain is added to the	198
contribution of the corresponding variable. In order to estimate the permutation	199
importance of each environmental variable, in turn the values of the corresponding	200
variable on training presence and background data are randomly permuted. The model	201
is reevaluated on the permuted data, and the resulting drop in Training AUC is	202
normalized to percentages. In order to estimate if occurrence data of the wild ass are	203
spatially autocorrelated, we calculated Moran's I Index (Moran 1950) for each spatial	204
resolution separately (10 m, 100 m and 1 km).	205
Model validation	206
	200
we validated the model using: 1) MAXENT's five performance measures and 2) a	207
cross-validation procedure. MAXENT model generates three gain measures and two	208
AUC measures. Gain measures the goodness of fit of a models, it represents the	209

likelihood of presence records compared to background records (Phillips 2005). A 210

gain of 1.6 means that an average presence location has a relative probability of $e^{1.6}$,	211
which is five times higher than an average background point. Regularized training	212
gain accounts for the number of predictors in the model to address overfitting;	213
Unregularized training gain has no compensation for the number of predictors in the	214
model; and <i>Test gain</i> is calculated from presence records held out to test the model.	215
AUC is the area under the curve of the receiver operating characteristic (ROC) plot.	216
ROC curves are widely used for validating SDMs and for comparing between models	217
(Elith et al. 2006; Hernandez et al. 2006; Marmion et al. 2009). The AUC values	218
range between 0 and 1, where 1 represents perfect prediction ability of the model and	219
0.5 represents prediction that is no better than random. Training AUC calculates AUC	220
using the training data; and Test AUC calculates AUC using the test data. A cross-	221
validation procedure was used to estimate errors around predictive performance on	222
held-out data (Elith et al. 2011). Occurrence data are randomly split into a number of	223
equal-size groups (folds), and models are created leaving out each fold in turn. The	224
left-out folds are then used for evaluation. Cross-validation uses all of the data for	225
validation. A 10-folds cross-validation procedure was used for the 10 m and 100 m	226
models, and a 5-folds cross-validation procedure was used for the 1 km model.	227

Results

We recorded a total of 3,232 feces mounds in 18,300 survey units (10 m cells). Feces	229
mounds were found in 115 of the 122 sampling sites. The number of mounds per site	230
ranged from 0 to 124. Five potential explanatory variables were eliminated from the	231
model (Table 1) due to high correlation coefficient (>0.65 or <-0.65, Pearson	232
correlation, see Appendix 3), leaving nine variables in the model. Three of these	233
spatial data layers, namely vegetation, slope, and altitude, were considered as the most	234

influential explanatory variables by the MAXENT algorithm, accounting together for	235
~85% of the cumulative relative contribution (Table 2). Woody vegetation density	236
was found to have the strongest effect on the Asiatic wild ass distribution (Table 2;	237
Appendix 4). The response curve of woody vegetation cover (Appendix 5) showed an	238
increasing presence of the animals with increasing vegetation cover, leveling off	239
sharply at the saturation point (>72% coverage). Slope was the second most important	240
variable (Table 2) and was inversely related to wild ass distribution (Appendix 5). In	241
slopes steeper than 20°, no feces mounds were found. Altitude was the third most	242
important variable, with 12% relative contribution. The other six explanatory	243
variables that were included in the model had a lower effect on the distribution of wild	244
ass, together accounting for ~15% of the relative contribution to the model, Table 2.	245

The performance of the three models (10 m, 100, and 1 km) differed markedly.	246
The 10 m model yielded the highest averaged values in all five performance measures	247
(Table 3), indicating high predictive capacity. The 1 km model yielded the lowest	248
values in all measures, with extremely low values for Test gain (-0.02) and Test AUC	249
(0.67), suggesting poor predictive capacity at this scale. The cross-validation	250
procedure revealed high consistency between the different runs, since standard	251
deviation values were relatively low (Table 2 and 3).	252

Table 2. Percent contribution and permutation importance of the predictor variables253for the 10 m resolution MAXENT model for wild ass. See *Statistical model* section in254the Methods for an explanation. Standard deviation is shown in parentheses.255

Explanatory variable	Relative contribution in % (± Std)	Permutation importance in % (± Std)
Vegetation	54.5 (0.44)	47.83 (0.93)
Slope	18.04 (0.41)	28.83 (1.31)
Altitude (DEM)	11.97 (0.41)	9.45 (0.73)

			256
Military training sites	0.33 (0.06)	0.33 (0.09)	
Aspect	0.36 (0.07)	0.49 (0.08)	
Nature reserve	1.39 (0.13)	0.95 (0.18)	
Cumulative drainage	1.66 (0.14)	1.24 (0.15)	
Distance from military bases and settlements	5 (0.21)	4.43 (0.36)	
Distance from all permanent and temporary water sources	6.76 (0.26)	6.44 (0.32)	

Table 3. The averaged MAXENT performance measures calculated using a 10-folds257or a 5-folds cross-validation procedure. Standard deviation is shown in parentheses.258

		Models	
Model performance measures:	10 m model	100 m model	1 km model
Regularized training gain	1.63 (0.01)	1.16 (0.01)	0.64 (0.03)
Unregularized training gain	1.94 (0.01)	1.43 (0.01)	0.97 (0.04)
Test gain	1.82 (0.06)	1.26 (0.12)	-0.02 (0.07)
Training AUC	0.93 (0)	0.9 (0)	0.85 (0.01)
Test AUC	0.92 (0.01)	0.88 (0.01)	0.67 (0.02)

259

Occurrence data at a 10 m resolution had a relatively low spatial autocorrelation	260
(Moran's I Index of 0.13), while the 100 m and 1 km resolutions had higher values	261
(0.38 and 0.22 respectively).	262

The probabilistic distribution map was heterogeneous and informative at the very263fine scale of 10 m, and the fine scale of 100 m (Fig. 2A-B), and much less informative264at the scale of 1 km (Fig. 2C). The strong effect of streambeds on the species265distribution was apparent at the two finer scales: areas of high probability of presence266were in streambeds (wadis) characterized by woody vegetation and moderate terrain.267The high resolution allowed detection of the following trends and phenomena at: [1]268Possible convenient movement corridors in a matrix of unsuitable environment, which269

enable landscape connectivity among sites (Fig. 4A). [2] Isolated local sites/areas of	270
high suitability for the wild ass (high-quality habitat "islands") situated within broad	271
areas of low quality habitat (Fig. 4B). [3]. Human-induced local entities that affect the	272
distribution, e.g., the influence of roads on the quality of proximate habitats (Fig. 4C,	273
see discussion for details). [4] Important geomorphologic features that affect the	274
distribution, e.g., streambeds (Fig. 4D).	275

In contrast to the high variability visualized at fine scale, this map did not show 276 regional trends or gradients at the scale of the study area. Sites with very high and 277 very low probabilities of wild ass presence were found near each other throughout the 278 entire study area; however, in several areas, a spatial continuity of high value sites 279 was noticeable: Makhtesh Ramon (A), Paran streambed (B), the upper part of Nekarot 280 streambed (C), and the Lotz potholes (Borot Lotz) (D) (Fig. 3). These areas have the 281 potential to serve as activity centers for the population. A spatial continuum of sites 282 with low suitability for the Asiatic wild ass also was discernable (Fig. 3, points E-H). 283

 284

 Figure 2: A comparison between the northern regions of the probabilistic distribution
 285

 maps of the three models. (A) 10 m resolution model, (B) 100 m resolution model,
 286

 and (C) 1 km resolution model.
 287

Figure 3: Probabilistic distribution maps of a 10 m resolution model for the Asiatic289wild ass in the Negev. Potential wild ass activity centers: Makhtesh Ramon (A), Paran290streambed (B), the upper part of Nekarot streambed (C) and the Lotz potholes (Borot291Lotz) (D). A spatial continuum of sites with low suitability: the Paran Stream Estuary292(E), the region south of Mount Karkom (F), Be'er Menuha (G), and the Eastern part293of Makhtesh Ramon (H). Stars indicate reintroduction sites.294

Figure 4. Detecting landscape features on the high-resolution map: (a) Potential297movement corridors, (b) Isolated habitat patches, (c) Important geomorphologic298features, (d) Anthropogenic effects on habitat quality (roads effect increased roadside299vegetation). Colors represent predicted habitat suitability: from green, low suitability,300to red, high suitability.301

Discussion

In this study we combined three elements in order to develop a predictive distribution303model for the wild ass, a rare and elusive animal: a database of spatial layers of304explanatory variables, mapped at a very fine resolution; a systematic sampling305scheme; and an intensive feces mound survey. The results indicate that this approach306yields an accurate and informative model.307

Factors affecting wild ass distribution

308

The most important variable in the model was the percentage of woody vegetation309cover. Its relative contribution (54.5%) was much higher than that of the other310variables. The importance of vegetation to the wild ass distribution is consistent with311previous studies (Davidson et al. 2013; Giotto et al. 2015; Henley et al. 2007). The312strong vegetation effect on the distribution is a result of its nutritional value (St-Louis313and Côté 2014), the partial shade it offers, its value for hiding, and in arid areas the314vegetation is a favorable microhabitat with reduced temperatures (Belsky et al. 1993).315

The second most important variable in the model was slope (relative contribution 316 of 18.04%). The Asiatic wild ass prefers moderate over steep terrain, and avoids steep 317 slopes. This observation was supported by previous studies (Davidson et al. 2013; 318 Giotto et al. 2015; Henley et al. 2007). The next variables in order of importance were 319 altitude (11.97%) and distance from water sources (6.76%). The positive effect of 320 altitude on wild ass distribution is probably related to lower temperatures associated 321 with higher elevations. The Negev is a hyper- arid desert and we expected that 322 distance from water sources would be a major predictor of wild ass distribution. 323 Indeed, the water sources themselves were found to be centers of wild ass activity. 324 However, the daily movement range of the wild ass can reach up to twenty km in each 325

direction (Saltz et al. 2000), and feces are distributed across most of the study area.	326
This may explain why the distance from water source was not a major determinant of	327
wild ass distribution.	328
Resolution	329
Model performance	330
Constructing models at various spatial resolutions and comparing between them	331
enabled us to quantify the effect of resolution on SDM performance. Seemingly,	332
model performance increased with increasing model resolution (Table 3). This finding	333
contradicts a previous study (Guisan et al. 2007) of the effect of degrading model	334
resolution on the performance of SDMs, who found that using finer cell sizes (from 1	335
km to 100 m, and from 10 km to 1 km) does not have a major effect on model	336
predictions. Yet, our results suggest that when the effective resolution of the	337
predictors was 10 m (10^2 m ²), the model provides useful insights regarding the species	338
distribution that are not possible at coarser scales, as is elaborated in the following	339
section.	340
AUC is one of the most commonly used statistics to characterize model	341
performance (Yackulic et al. 2013), but its usage has been strongly criticized,	342
particularly with presence-only data (Gueta and Carmel 2016; Jiménez-Valverde et al.	343
2013; Lobo et al. 2008; Yackulic et al. 2013), since it ignores the predicted probability	344
values and the goodness-of-fit of the model (Yackulic et al. 2013). Corroborating	345
these views, our 1 km model had a high Training AUC value (0.85) whereas the Test	346
gain showed near zero predictive capability (Table 3). This reveals AUC's low	347
informative value and its inadequacy as a performance index in presence-only	348
modelling framework. Gain indices are more sensitive indicators of model	349
performance (Gueta and Carmel 2016).	350

High-resolution spatial layers of explanatory variables	351
We invested considerable resources and effort to produce and obtain the layers of	352
explanatory variables at a spatial resolution of 10 m wherever possible. For climatic	353
variables, the original spatial resolution is 1 km. In contrast, the original resolution of	354
the vegetation and topography layers was 10 m. Indeed, these two variables were the	355
most important predictors in the 10 m model, somewhat less so in the 100 m model,	356
and nearly meaningless in the 1 km model.	357
Distribution models of large mammals with large home ranges are typically	358
constructed at resolutions of 100 – 10,000 m (e.g., (Bellamy et al. 2013), 2-6 orders of	359
magnitude lower than the 10 m resolution of the present study. Apparently, the two	360
predictors found to be the most important, vegetation and slope, appeared nearly	361
meaningless at a resolution of 1000 m. The distribution map constructed at this coarse	362
scale was not very informative.	363
High-resolution distribution map	364
The distribution map obtained by the model enabled us to examine the relative habitat	365
suitability of each site for the wild ass at a fine resolution. The fine-grain image in	366
Fig. 3 illustrates that low quality habitats are found within broad areas of suitable	367
habitat, and vice versa. The high resolution of the map allowed the detection of four	368
habitat components as important for the species' use of space (Fig. 4): (a) Potential	369
movement corridors (Fig. 4A). Connectivity within the species' range is essential for	370
the spatial, demographic and genetic dynamics of animal populations and their	371

persistence over time (Colbert et al. 2001; Saccheri et al. 1998) and should be372recognized as a high conservation priority (Beier et al. 2006). Identifying connectivity373corridors is highly important for the protection of the species, since they may facilitate374wild ass movements within a matrix of less suitable areas, enabling connectivity375

between high-quality habitats (Fig. 2, points A-D). (b) Isolated habitat patches (Fig.	376
4B). Isolated sites or small fragments of high habitat quality within low quality areas	377
may constitute potential 'stepping stones' sites that aid in connecting between activity	378
centers. (c) Important geomorphologic features (Fig. 4C). The high-resolution map	379
indicated clearly the importance of streambeds, including first order streams, in the	380
distribution patterns of the wild ass. In coarser maps, the influence of the streambeds	381
cannot be detected. (d) Anthropogenic effect on distribution. Anthropogenic features	382
may influence distribution patterns of species and therefore it is important that they be	383
identified (Valverde et al. 2008). For example, based on the high-resolution wild ass	384
distribution model, roads were found to increase considerably the quality of habitats	385
in the proximate areas of the roads (Fig. 4D). However, in a specific case, the road	386
effect led to high density of roadside vegetation. The high vegetation quality, in turn,	387
attracted wild asses to the proximity of the road, and several road-kills of wild asses	388
were reported in this area, calling for roadside vegetation management (Asaf Tsoar,	389
personal communication). This example illustrates the importance of the model as a	390
tool to identify such potential negative anthropogenic effects.	391
Sampling	392
Systematic sampling of presence data	393
Many distribution models that are based on presence-only data suffer from	394
inaccuracies, due to biased sampling (e.g., multiple observations near roads and	395
accessible sites) and a distribution of observations that is unrepresentative of the range	396
of environmental conditions in the study region (Barry and Elith 2006; Elith et al.	397
2011; Kramer-Schadt et al. 2013; Phillips and Elith 2013). In this study, we	398
implemented an approximate systematic sampling scheme based on the spatial pattern	399
of major environmental conditions in the study region, thus reducing the	400

aforementioned errors. A common problem in sampling rare species is a zero-inflated	401
distribution of records. In order to reduce this problem, dry river beds were over-	402
represented based on a prior knowledge that wild asses are usually found within	403
riverbeds. Still, two-thirds of the samples were located off riverbeds. However, due to	404
the dense network of riverbeds and the high density of sampling sites – only few areas	405
were out of the reach of this sampling scheme (Fig. 1), and the possible bias was	406
minimal.	407

Indirect observations for presence data

Predictive distribution models are usually based on direct observations. Creating a	409
database of direct observations of an elusive organism with a small population, in a	410
region with very limited accessibility is a very complicated task (Lozano et al. 2003;	411
Sharp et al. 2001). Therefore, it was proposed that indirect observations (tracks, feces)	412
may replace direct observations, when there is a clear connection between the	413
presence of the species and the indirect observations (Fernandez et al. 2006; Kays et	414
al. 2008; Perinchery et al. 2011; Vina et al. 2010). In this study, we relied on indirect	415
observations using feces mounds as the basis for presence data. The major advantage	416
of surveying feces mounds is that they remain in the field after the animal leaves,	417
increasing the probability of recording activity in sites visited by the species. These	418
factors are enhanced in a desert environment, since in arid regions the decomposition	419
rate of the feces is slower, and mounds may last for long periods, in the case of the	420
wild asses in the Negev up to a year. The large number of observations is a major	421
component of the strength and reliability of a distribution model (Barry and Elith	422
2006). The feces surveys in our study led to a large number of observations. Obtaining	423
a similar sized database using direct observations would have required a much greater,	424
longer and costlier sampling effort.	425

Implications for conservation

SDMs can help to design conservation policies (Guisan and Zimmermann 2000). The	427
endangered Asiatic wild ass can become a focus of conservation interest due to its	428
impressive appearance, rarity, reintroduction process and its pivotal function in the	429
Negev ecosystem (Polak et al. 2014). The SDM constructed in this study can serve to	430
locate favorable high-quality patches, and potential future expansion directions of the	431
species in the Negev Desert. It can also be used to locate potential routes and	432
corridors among activity centers which are important to maintain connectivity within	433
the population. Model predictions can then be validated by conducting field surveys	434
(Davidson et al. 2013). This information can serve as the basis for developing	435
conservation and management strategies for the wild ass. Specifically, the map	436
enabled us to identify large continuous geographic areas of suitable habitat, which	437
constitute potential activity centers. Three of the continuous areas identified in the	438
map (central Makhtesh Ramon, Paran streambed, and Borot Lotz; Fig. 3) were	439
confirmed in the field as significant activity centers, based on direct observations.	440
Two of these sites – the Paran streambed and the central part of Makhtesh Ramon	441
overlap with the reintroduction sites. However, distance from the reintroduction sites	442
was not found to be a significant factor affecting species distribution in the statistical	443
model. Each one of the three activity centers contains a permanent water source. The	444
model further enabled us, in a parallel study, to identify areas with low landscape	445
connectivity among activity centers (Gueta et al. 2014). These areas were suggested to	446
limit gene flow, leading to the relative isolation of a subpopulation and to the	447
development of population genetic structure in the reintroduced wild ass population	448
(Gueta et al. 2014). Limited gene flow among activity centers may further affect the	449

population genetic diversity (Renan et al. 2015) which is essential for the population's	450
long-term viability (Hughes et al. 2008).	451

The distribution model can also be used to locate a potential direction for	452
expanding the wild ass range, by projecting the model onto additional areas (Bar-	453
David et al. 2008). It is important to identify areas of potential spatial expansion, in	454
order to ensure the protection and maintenance of landscape connectivity, which is	455
essential for the species' distribution and, hence, for its persistence in the wild.	456

Acknowledgement

We would like to thank David Saltz, Alan R. Templeton, and Amos Bouskila for their	459
contributions to this study; Itamar Giladi for providing insightful comments that	460
greatly improved the manuscript. This research was supported by the United States-	461
Israel Binational Science Foundation Grant 2011384 awarded to S. B-D, A. R.	462
Templeton and A. Bouskila. GIS layers were provided by the GIS Department of the	463
Israel Nature and Parks Authority. This is publication <xxx> of the Mitrani</xxx>	464
Department of Desert Ecology.	465

References

Bar-David S, Saltz D, Dayan T (2005) Predicting the spatial dynamics of a	468
reintroduced population: the Persian fallow deer Ecological Applications	469 470
Bar-David S. Saltz D. Davan T. Shkedy Y (2008) Using spatially expanding	471
nonulations as a tool for evaluating landscape planning: The reintroduced	471
persian fallow deer as a case study Journal for Nature Conservation 16 164	472 473
Barry S Elith I (2006) Error and uncertainty in babitat models Journal of Applied	473
Ecology 43:413-423	475
Beier P. Penrod K. Luke C. Spencer W. Cabañero C (2006) South coast missing	476
linkages: Restoring connectivity to wildlands in the largest metropolitan area	477
in the united states. In: Crooks KR, Sanjayan M (eds) Connectivity	478
Conservation Cambridge University Press, Cambridge, United Kingdom, pp	479
555-586	480
Bellamy C, Scott C, Altringham J (2013) Multiscale presence-only habitat suitability	481
models: fine-resolution maps for eight bat species Journal of Applied Ecology 50:892-901	482 483
Belsky A. Mwonga S. Amundson R. Duxbury J. Ali A (1993) Comparative effects of	484
isolated trees on their undercanopy environments in high- and low-rainfall	485
savannas Journal of Applied Ecology 30:143-155	486
Blank L, Carmel Y (2012) Woody vegetation patch types affect herbaceous species	487
richness and composition in a mediterranean ecosystem Community Ecology	488
13:72-81	489
Carmel Y, Stoller-Cavari L (2006) Comparing environmental and biological	490
surrogates for biodiversity at a local scale Israel Journal of Ecology and	491
Evolution 52:11-27	492
Colbert T et al. (2001) High-throughput screening for induced point mutations Plant	493
Physiology 126:480-484	494
Crawley M, Harral J (2001) Scale dependence in plant biodiversity Science 291:864-	495
868	496
Danin A (1999) Desert rocks as plant refugia in the near east Botanical Review 65:93- 170	497 498
Davidson A, Carmel Y, Bar-David S (2013) Characterizing wild ass pathways using a	499
non-invasive approach: Applying least-cost path modelling to guide field	500
surveys and a model selection analysis Landscape Ecology 28:1465	501
Duff A, Morrell T (2007) Predictive occurrence models for bat species in california	502
Journal of Wildlife Management 71:693-700	503
Elith J et al. (2006) Novel methods improve prediction of species' distributions from	504
occurrence data Ecography 29:129-151	505
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical	506
explanation of MaxEnt for ecologists Diversity and distributions 17:43-57	507
Fernandez N, Delibes M, Palomares F (2006) Landscape evaluation in conservation:	508
Molecular sampling and habitat modeling for the Iberian lynx Ecological	509
Applications 16:1037-1049	510
Gallant D, Vasseur L, Berube C (2007) Unveiling the limitations of scat surveys to	511
monitor social species: A case study on river otters Journal of Wildlife	512
Management 71:258-265	513

Giotto N, Gerard JF, Ziv A, Bouskila A, Bar-David S (2015) Space-Use Patterns of	514
the Asiatic Wild Ass (Equus hemionus): Complementary Insights from	515
Displacement, Recursion Movement and Habitat Selection Analyses PLoS	516
ONE 10 doi:10.1371/journal.pone.0143279	517
Graham C, Ferrier S, Huettman F, Moritz C, Peterson A (2004) New developments in	518
museum-based informatics and applications in biodiversity analysis Trends in	519
Ecology & Evolution 19:497-503	520
Groves C (1986) The taxonomy, distribution, and adaptations of recent equids. In: RH	521
M, HP U (eds) Equids in the Ancient World. Ludwig Reichert Verlag,	522
Wiesbaden,	523
Gueta T, Carmel Y (2016) Quantifying the value of user-level data cleaning for big	524
data: A case study using mammal distribution models Ecological Informatics	525
Gueta T, Templeton A, Bar-David S (2014) Development of genetic structure in a	526
heterogeneous landscape over a short time frame: The reintroduced asiatic	527
wild ass Conservation Genetics 15:1231	528
Guisan A, Graham C, Elith J, Huettmann F (2007) Sensitivity of predictive species	529
distribution models to change in grain size Diversity and Distributions 13:332-	530
340	531
Guisan A et al. (2013) Predicting species distributions for conservation decisions	532
Ecology letters 16:1424-1435	533
Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology	534
Ecological Modelling 135:147-186	535
Henley S, Ward D (2006) An evaluation of diet quality in two desert ungulates	536
exposed to hyper-arid conditions African Journal of Range and Forage Science	537
23:185-190	538
Henley S, Ward D, Schmidt I (2007) Habitat selection by two desert-adapted	539
ungulates Journal of Arid Environments 70:39-48	540
Hernandez P, Graham C, Master L, Albert D (2006) The effect of sample size and	541
species characteristics on performance of different species distribution	542
modeling methods Ecography 29:773-785	543
Hess GR, Bartel RA, Leidner AK, Rosenfeld KM, Rubino MJ, Snider SB, Ricketts	544
TH (2006) Effectiveness of biodiversity indicators varies with extent, grain,	545
and region Biological Conservation 132:448-457	546
Hughes A, Inouye B, Johnson M, Underwood N, Vellend M (2008) Ecological	547
consequences of genetic diversity Ecology Letters 11:609	548
Jeschke J, Strayer D (2008) Usefulness of bioclimatic models for studying climate	549
change and invasive species Annals of the New York Academy of Sciences	550
1134:1-24	551
Jimenez-Valverde A, Acevedo P, Barbosa AM, Lobo JM, Real R (2013)	552
Discrimination capacity in species distribution models depends on the	222
Pieces exercise 22:509, 516	554
Biogeography 22:508-516 Keys D. Commun. M. Dey I (2008) Londonna coole on of contam country hand on	555
Kays R, Gompper M, Ray J (2008) Landscape ecology of easiern coyoles based on	550
Kart D. Dar Massada A. Carmal V (2011) Multiagala analysis of mammal analysis	551
Composition Environment relationship in the continuous USA DioS One	550
6×25440	559
U-0207440 Kramer Schadt S et al. (2013) The importance of correcting for compling bias in	500
MayEnt species distribution models Diversity and Distributions 10:1266-1270	567
doi:10.1111/ddi.12096	563

Kumar S, Spaulding S, Stohlgren T, Hermann K, Schmidt T, Bahls L (2009) Potential	564
habitat distribution for the freshwater diatom didymosphenia geminata in the	565
continental US Frontiers in Ecology and the Environment 7:415-420	566
Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the	567
performance of predictive distribution models Global ecology and	568
Biogeography 17:145-151	569
Lozano J, Virgos E, Malo A, Huertas D, Casanovas J (2003) Importance of scrub-	570
pastureland mosaics for wild-living cats occurrence in a mediterranean area:	571
Implications for the conservation of the wildcat felis silvestris Biodiversity	572
and Conservation 12:921-935	573
Manel S, Dias J, Buckton S, Ormerod S (1999) Alternative methods for predicting	574
species distribution: An illustration with himalayan river birds Journal of	575
Applied Ecology 36:734-747	576
Manel S, Williams H, Ormerod S (2001) Evaluating presence-absence models in	577
ecology: The need to account for prevalence Journal of Applied Ecology	578
38:921-931	579
Marmion M, Parviainen M, Luoto M, Heikkinen R, Thuiller W (2009) Evaluation of	580
consensus methods in predictive species distribution modelling Diversity and	581
Distributions 15:59-69	582
Moehlman P, Shah N, Feh C (2008) Equus hemionus. IUCN.	583
http://www.iucnredlist.org/details/tull//951/0. Accessed August 2016 2016	584
Moran PA (1950) Notes on continuous stochastic phenomena Biometrika 3/:1/-23	585
Norris D (2014) Model thresholds are more important than presence location type: Understanding the distribution of leadend taxin (T_{int})	586
Understanding the distribution of lowland tapir (<i>Lapirus terrestris</i>) in a	500
7,520, 547	J00 590
7.529-547 Desree I. Devee M (2006) Modelling distribution and abundance with presence only	J09 500
data Journal of Applied Ecology 43:405-412	501
Perinchery A Jathanna D, Kumar A (2011) Factors determining occupancy and	507
habitat use by Asian small-clawed otters in the Western Ghats. India Journal	593
of Mammalogy 92:796-802	594
Peterson AT (2011) Ecological niches and geographic distributions (MPB-49) vol 49	595
Princeton University Press	596
Phillips S. Anderson R. Schapire R (2006) Maximum entropy modeling of species	597
geographic distributions Ecological Modelling 190:231-259	598
Phillips S. Dudik M (2008) Modeling of species distributions with maxent: New	599
extensions and a comprehensive evaluation Ecography 31:161-175	600
Phillips SJ (2005) A brief tutorial on Maxent AT&T Research	601
Phillips SJ, Elith J (2013) On estimating probability of presence from use-availability	602
or presence-background data Ecology 94:1409-1419	603
Polak T, Gutterman Y, Hoffman I, Saltz D (2014) Redundancy in seed dispersal by	604
three sympatric ungulates: A reintroduction perspective Animal Conservation	605
17:565	606
Radosavljevic A, Anderson RP (2014) Making better Maxent models of species	607
distributions: complexity, overfitting and evaluation Journal of Biogeography	608
41:629-643 doi:10.1111/jbi.12227	609
Renan S, Greenbaum G, Shahar N, Templeton A, Bouskila A, Bar-David S (2015)	610
Stochastic modelling of shifts in allele frequencies reveals a strongly	611
polygynous mating system in the re-introduced asiatic wild ass Molecular	612
Ecology 24:1433	613

Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998)	614
Inbreeding and extinction in a butterfly metapopulation Nature 392:491-494	615
Saltz D, Rowen M, Rubenstein D (2000) The effect of space-use patterns of	616
reintroduced asiatic wild ass on effective population size Conservation	617
Biology 14:1852-1861	618
Saltz D, Rubenstein D (1995) Population-dynamics of a reintroduced asiatic wild ass	619
Equus hemionus herd Ecological Applications 5:327-335	620
Saltz D, Schmidt H, Rowen M, Karnieli A, Ward D, Schmidt I (1999) Assessing	621
grazing impacts by remote sensing in hyper-arid environments Journal of	622
Range Management 52:500-507	623
Schulz E, Kaiser TM (2013) Historical distribution, habitat requirements and feeding	624
ecology of the genus Equus (Perissodactyla) Mammal Review 43:111-123	625
doi:10.1111/j.1365-2907.2012.00210.x	626
Sharp A, Norton M, Marks A, Holmes K (2001) An evaluation of two indices of red	627
fox vulpes vulpes abundance in an arid environment Wildlife Research	628
28:419-424	629
St-Louis A, Côté SD (2014) Resource selection in a high-altitude rangeland equid, the	630
kiang (Equus kiang): Influence of forage abundance and quality at multiple	631
spatial scales Canadian Journal of Zoology 92:239-249 doi:10.1139/cjz-2013-	632
0191	633
Stauffer D, Best L (1986) Nest-site characteristics of open-nesting birds in riparian	634
habitats in iowa The Wilson Bulletin 231-242	635
Stern E, Gardus Y, Meir A, Krakover S, Tzoar H (1986) Atlas of the Negev. Keter	636
Publishing House, Jerusalem	637
Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative	638
evaluation of presence-only methods for modelling species distribution	639
Diversity and Distributions 13:397-405	640
Valverde AJ, Lobo J, Hortal J (2008) Not as good as they seem: The importance of	641
concepts in species distribution modelling Diversity and Distributions 14:885-	642
890	643
Vina A, Tuanmu M, Xu W, Li Y, Ouyang Z, DeFries R, Liu J (2010) Range-wide	644
analysis of wildlife habitat: Implications for conservation Biological	645
Conservation 143:1960-1969	646
Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH,	647
Veran S (2013) Presence-only modelling using MAXENT: when can we trust	648
the inferences? Methods in Ecology and Evolution 4:236-243	649
	650
	651
	652

Supplementary material

Appendix 1: Vegetation map.	655
The vegetation layer was derived from a combination of computerized classification	656
and manual interpretation of high-resolution (2 m pixel) aerial photographs of the	657
area, taken in 2008 (two years prior to the feces survey). The classification scheme	658
included two classes, woody vegetation and all other (mostly bare area). For some	659
parts of the study area, an unsupervised classification provided sufficient results.	660
However, in other parts, the dark bedrock and woody vegetation had very similar DN	661
values. We found that only manual classification based on structural clues yielded	662
satisfying results. The manual classification of these areas was laborious, but resulted	663
in excellent accuracy. Assessment of the accuracy of the vegetation layer was	664
conducted using manual interpretation of >500 control points on an air photo of the	665
same area from a previous year. The overall accuracy of the binary vegetation	666
classification was 0.96. This value is probably a conservative estimate (since some of	667
the errors could be attributed to the control photo). The 2 m layer was downscaled to a	668
resolution of 10 m, recording the proportion of woody vegetation in each 10 m cell.	669
The resulting layer was processed using a moving window analysis, where each 10 m	670
cell represented the averaged vegetation cover over a 100 m radius. The rationale for	671
this was that the animal selects its location viewing the vegetation around it, not only	672
its immediate location (Bar-David et al. 2005). A preliminary comparison between	673
these two vegetation layers showed that they had very similar effect on the	674
distribution model, and we selected the smoothed layer for the final models.	675

Figure S1. Maps of the explanatory variables.

Aspect (degrees)

Military training sites (binary)

Altitude (m)

Cumulative drainage

<figure>

Distance from military bases and settlements (m)

Appendix 3: Multicollinearity matrices

Table S2. Multicollinearity matrices for the variables used in the three models. (A) 10 m resolution. (B) 100 m resolution. (C) 1000 m resolution. Stars (*) indicate variables eliminated from the model due to high correlation with other variables.

#	Description	1	2	3	4	5	6	7	8	9	10	11	12	13
1	Aspect													``
2	Altitude (DEM)	0.14											V	4)
3	* Distance from reintroduction sites	-0.02	-0.03											
4	* Distance from roads	0.04	0.14	-0.11										
5	Distance from all water sources	-0.02	0.09	0.56	0.05									
6	* Distance from watering holes	-0.09	-0.42	0.76	-0.05	0.69								
7	Distance from military bases and settlements	0.04	0.28	-0.14	0.83	0.05	-0.20							
8	Military training sites (binary)	0.02	0.21	-0.05	0.22	0.13	-0.03	0.27						
9	Cumulative drainage	-0.01	-0.02	-0.01	0.00	-0.01	0.00	0.00	0.00					
10	* Mean temperature in Aug	-0.13	-0.97	0.01	-0.11	-0.09	0.42	-0.28	-0.17	0.02				
11	* Mean annual precipitation	0.13	0.69	-0.17	0.18	-0.17	-0.46	0.25	-0.07	-0.01	-0.72			
12	Nature reserve (binary)	0.07	0.14	-0.02	0.25	-0.12	-0.21	0.18	-0.10	0.00	-0.14	0.19		
13	Slope	0.35	0.15	-0.05	0.12	-0.11	-0.13	0.09	0.02	-0.01	-0.13	0.19	0.19	
14	Vegetation	-0.08	-0.06	0.10	-0.07	-0.06	0.00	-0.07	-0.12	0.02	-0.01	0.06	0.00	-0.12
#	Description	1	3	2	4	F	6	7	0	0	10	11	12	12
#	Description	1	2	3	4	5	6	7	8	9	10	11	12	13
#	Description Aspect	1	2	3	4	5	6	7	8	9	10	11	12 (E	13 3)
# 1 2	Description Aspect Altitude (DEM)	1 0.19	2	3	4	5	6	7	8	9	10	11	12 (E	13 3)
# 1 2 3	Description Aspect Altitude (DEM) * Distance from reintroduction sites	1 0.19 -0.03	2 -0.04	3	4	5	6	7	8	9	10	11	12 (E	¹³
# 1 2 3 4	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads	1 0.19 -0.03 0.05	2 -0.04 0.13	3 -0.12	4	5	6	7	8	9	10	11	12 (E	¹³
# 1 2 3 4 5	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources	1 0.19 -0.03 0.05 -0.03	2 -0.04 0.13 0.09	3 -0.12 0.56	4	5	6	7	8	9	10	11	12 (E	13 3)
# 1 2 3 4 5 6	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes	1 0.19 -0.03 0.05 -0.03 -0.12	2 -0.04 0.13 0.09 -0.42	3 -0.12 0.56 0.76	4 0.04 -0.05	0.69	6	7	8	9	10	11	12 (E	¹³
# 1 2 3 4 5 6 7	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from military bases and settlements	1 0.19 -0.03 0.05 -0.03 -0.12 0.05	2 -0.04 0.13 0.09 -0.42 0.28	3 -0.12 0.56 0.76 -0.14	4 0.04 -0.05 0.83	5 0.69 0.05	-0.20	7	8	9	10	11	12 (E	13 3)
# 1 2 3 4 5 6 7 8	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from military bases and sett lements Military training sites (binary)	1 0.19 -0.03 -0.03 -0.12 0.05 0.03	2 -0.04 0.13 0.09 -0.42 0.28 0.21	3 -0.12 0.56 0.76 -0.14 -0.06	4 0.04 -0.05 0.83 0.23	5 0.69 0.13	6 -0.20 -0.03	0.28	8	9		11	12 (E	13 3)
# 1 2 3 4 5 6 7 8 9	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from watering holes and settlements Military training sites (binary) Cumulative drainage	1 0.19 -0.03 0.05 -0.03 -0.12 0.05 0.03 -0.04	2 -0.04 0.13 0.09 -0.42 0.28 0.21 -0.07	3 -0.12 0.56 0.76 -0.14 -0.03	4 0.04 -0.05 0.83 0.23 0.00	5 0.69 0.13 -0.02	6 -0.20 -0.03 -0.02	7	8	9		11	12	13 3)
# 1 2 3 4 5 6 7 8 9 10	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from military bases and sett lements Military training sites (binary) Cumulative drainage * Mean temperature in Aug	1 0.19 -0.03 -0.03 -0.12 0.05 0.03 -0.04 -0.18	2 -0.04 0.13 0.09 -0.42 0.28 0.21 -0.07 -0.97	3 -0.12 0.56 0.76 -0.14 -0.06 -0.03 0.01	4 0.04 -0.05 0.83 0.23 0.00 -0.11	5 0.69 0.13 -0.02 -0.09	6 -0.20 -0.03 -0.02 0.43	7 0.28	8 -0.02 -0.18	9			12	13 3)
# 1 2 3 4 5 6 7 8 9 10 11	Description Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from military bases and settlements Military training sites (binary) Cumulative drainage * Mean temperature in Aug * Mean annual precipitation	1 0.19 -0.03 -0.03 -0.12 0.05 0.03 -0.04 -0.18 0.17	2 -0.04 0.13 0.09 -0.42 0.28 0.21 -0.07 -0.97 0.69	3 -0.12 0.56 0.76 -0.14 -0.06 -0.03 0.01	4 0.04 -0.05 0.83 0.23 0.00 -0.11 0.18	5 0.69 0.05 0.13 -0.02 -0.09 -0.17	6 -0.20 -0.03 -0.02 0.43 -0.46	7 	8 -0.02 -0.18 -0.07	9 	-0.73		12	13 3)
# 1 2 3 4 5 6 7 8 8 9 10 11 11 12	Description Aspect Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from military bases and settlements Military training sites (binary) Cumulative drainage * Mean temperature in Aug * Mean annual precipitation Nature reserve (binary)	1 0.19 -0.03 -0.03 -0.12 0.05 0.03 -0.04 -0.18 0.17 0.09	2 -0.04 0.13 0.09 -0.42 0.28 0.21 -0.07 -0.97 0.69 0.15	3 -0.12 0.56 0.76 -0.14 -0.06 -0.03 0.01 -0.17 -0.17	4 0.04 -0.05 0.83 0.23 0.00 -0.11 0.18 0.25	5 0.69 0.05 0.13 -0.02 -0.09 -0.17 -0.12	6 -0.20 -0.03 -0.02 0.43 -0.46 -0.21	7 	8 	9 	10 	0.19	12	13 3)
# 1 2 3 4 5 6 7 8 9 10 11 11 12 13	Description Aspect Aspect Altitude (DEM) * Distance from reintroduction sites * Distance from roads Distance from all water sources * Distance from watering holes Distance from military bases and settlements Military training sites (binary) Cumulative drainage * Mean temperature in Aug * Mean annual precipitation Nature reserve (binary) Slope	1 0.19 -0.03 -0.03 -0.03 -0.12 0.03 -0.04 -0.18 0.17 0.09 0.41	2 -0.04 0.13 0.09 -0.42 0.21 0.21 -0.07 -0.97 0.69 0.15 0.18	3 -0.12 0.56 0.76 -0.14 -0.06 -0.03 0.01 -0.17 -0.02 -0.06	4 0.04 -0.05 0.83 0.23 0.00 -0.11 0.18 0.25 0.15	5 0.69 0.05 0.13 -0.02 -0.09 -0.17 -0.12 -0.13	6 -0.20 -0.03 -0.02 0.43 -0.46 -0.21 -0.16	7 	8 -0.02 -0.18 -0.07 -0.10 0.02	9 	10 -0.73 -0.15	11 	12 (E	13 3)

Pearson correlation coefficients above 0.65 or less than -0.65

#	Description	1	2	3	4	5	6	7	8	9	10	11	12	13
1	Aspect												1	-1
2	Altitude (DEM)	0.38											"	-)
3	* Distance from reintroduction sites	-0.07	-0.04											
4	* Distance from roads	0.09	0.12	-0.15										
5	Distance from all water sources	-0.03	0.08	0.55	0.01									
6	* Distance from watering holes	-0.24	-0.43	0.75	-0.07	0.69								
7	Distance from military bases and settlements	0.10	0.27	-0.16	0.83	0.03	-0.21							
8	Military training sites (binary)	0.06	0.23	-0.08	0.24	0.13	-0.04	0.29						
9	Cumulative drainage	-0.09	-0.18	-0.10	0.00	-0.07	-0.05	-0.01	-0.03					
10	* Mean temperature in Aug	-0.37	-0.97	0.01	-0.08	-0.09	0.43	-0.27	-0.18	0.16				
11	* Mean annual precipitation	0.35	0.70	-0.17	0.18	-0.18	-0.48	0.24	-0.06	-0.06	-0.73			
12	Nature reserve (binary)	0.19	0.18	-0.04	0.26	-0.14	-0.24	0.20	-0.08	0.06	-0.17	0.22		
13	Slope	0.56	0.26	-0.11	0.23	-0.20	-0.25	0.18	0.04	0.00	-0.23	0.36	0.35	
14	Vegetation	-0.14	-0.10	0.21	-0.16	-0.10	0.03	-0.14	-0.26	0.11	0.00	0.07	-0.01	-0.18

Pearson correlation coefficients above 0.65 or less than -0.65

Appendix 4: Jackknife test of variable importance (a MAXENT output)

Figure S1. Results of the Training gain jackknife test of variable importance.

- With only variable
- With all variables

Figure S3. Results of the *Test AUC* jackknife test of variable importance.

The environmental variable with highest Training\Test gain and Test AUC when used in isolation is Vegetation, which therefore appears to have the most useful information by itself. The environmental variable that decreases the Training\Test gain and Test AUC the most when it is omitted is Vegetation, which therefore appears to have the most information that isn't present in the other variables.

Appendix 5: Response curves

Figure S4. Marginal response curves of the predicted probability of wild ass occurrences for predictor variables that contributed substantially to the distribution models. The y-axis is the predicted probability of suitable conditions as given by the logistic output format, with all other variables set to their average value over the set of presence localities. (A) Response of wild ass to woody vegetation cover. (B) Response of wild ass to slope.

