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1. Introduction

ABSTRACT

Understanding the spatial pattern of fire is essential for Mediterranean vegetation management. Fire-risk
maps are typically constructed at coarse resolutions using vegetation maps with limited capacity for
prescribing prevention activities. This paper describes and evaluates a novel approach for fire risk
assessment that may produce a decision support system for actual fire management at fine scales.
FARSITE, a two-dimensional fire growth and behavior model was activated, using ArcView VBA code, to
generate Monte Carlo simulations of fire spread. The study area was 300 km? of Mt. Carmel, Israel.
FARSITE fuel models were adjusted for Mediterranean conditions. The simulation session consisted of
500 runs. For each simulation run, a calendar date, fire length, ignition location, climatic data and other
parameters were selected randomly from known distributions of these parameters. Distance from road
served as a proxy for the probability of ignition. The resulting 500 maps of fire distribution (the entire area
burnt in a specific fire) were overlaid to produce a map of ‘hotspots’ and ‘cold spots’ of fire frequency. The
results revealed a clear pattern of fires, with high frequency areas concentrated in the northwestern part.
The spatial pattern of the fire frequency map bears partial resemblance to the fuel map, but seems to be
affected by several other factors as well, including the location of urban areas, microclimate, topography
and the distribution of ignition locations (which is affected by road pattern). These results demonstrate
the complexities of fire behavior, showing a very clear pattern of risk level even at fine scales, where
neighboring areas have different risk levels due to combinations of vegetation cover, topography,
microclimate and other factors.

Comparing the distribution of historic fires in the region against the map of simulated fire frequency
indicated that most fires tended to coincide with higher risk levels. This fact supports the hypothesis that
simulated fire frequency may serve as a reliable surrogate for fire risk. Thus, Monte Carlo simulations of a
fire spread model may produce high-resolution fire-risk maps that could be used for long-term strategic
planning of fire prevention activities.

© 2008 Elsevier B.V. All rights reserved.

force in the biological evolution of the Mediterranean biota (Naveh,
1975). Today, the majority of fires are caused by humans (Naveh,

Fires are a major source of forest destruction in the
Mediterranean Basin, causing enormous ecological and economic
damage, as well as loss of human life (Maselli et al., 2000).
Mediterranean fires are largely determined by climatic conditions;
long, dry summers with high temperatures reduce the moisture
content of forest litter to below 5%. Consequently, even a small
flame (such as a smoldering cigarette), can potentially lead to
severe wildfire (FAO, 2006). Environmental factors such as fire
history, vegetation cover, soil type or topography, all affect fire
ignition and behavior (Calabri, 1990). Natural fires were a major
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1994; FAO, 2006).

During the past several decades, a sharp increase in fire events
in Mediterranean forests has been observed, especially where the
anthropogenic pressure is high (FAO, 2001). This tendency became
obvious in the Mediterranean ecosystem of Mt. Carmel in
northwestern Israel, which experienced increasing numbers of
forest fires to various extents and levels of severity, as a result of
increasing human activities (Wittenberg et al., 2007). Fire-risk
evaluation, and in particular, understanding the spatial pattern of
fire, are essential for Mediterranean vegetation management
(Maselli et al., 2000). This fact is crucial in regions such as the
Mediterranean, where high ecological value coincides with dense
population (Shoshany and Goldshleger, 2002). To this end, fire-risk
maps have become widely used in many countries (Bonazountas
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et al., 2005). These risk maps are typically constructed at coarse
resolutions (pixel size = 102-10% ha) using fuel models or vegeta-
tion maps (Keane et al., 2001; Riano et al., 2002; Chuvieco et al.,
2004; Hessburg et al., 2007; Jolly, 2007). Several studies dealt with
risk mapping of different factors in the Mediterranean forests
(Maselli et al., 2000). They classified vegetation cover types by
integrating spectral and ancillary data using satellite data collected
in spring and summer periods. Other studies used remote sensing
to construct fuel maps as surrogates for fire risk (Lasaponara and
Lanorte, 2007).

Nevertheless, such risk maps have limited capacity for
prescribing fire prevention activities. Allocation of such activities
at local scales would require a high-resolution risk map (pixel
size =1071-10! ha), where the hotspots of high risk would be
delimited at local and landscape scales. The typical method for
mapping fire risk using vegetation maps cannot produce such fine
resolutions, and a different approach is required. Fuel load is a
major component of fire risk. However, the risk level is also
affected by other factors, such as weather conditions, ignition
sources and topography.

This paper presents an approach that evaluates fire risk
using most of the factors affecting fire behavior at high
resolution. An important advantage of such high-resolution
fire-risk maps is that they may enable managers to plan long-
term strategic fire prevention activities, such as blocking
interventions or border zones (Galtie et al., 2003), based on a
detailed, fine resolution fire-sensitivity map. The use of
mathematical models of fire spread (Rothermel, 1972) within
Monte Carlo simulations may be able to produce such high-
resolution risk maps.

Fire spread models have been investigated in many scientific
studies (reviewed by Pastor et al., 2003), and applied as predictive
tools in various managing agencies (reviewed by Scott and Burgan,
2005). These reviews indicate that such models have not been used
previously to construct fire-risk maps. However, a first step to this
end was taken by Mbow et al. (2004), who used multiple
simulations of fire spread to highlight (simulate) burnt vs. non-
burnt areas at a very fine resolution. This paper presents an
improved approach, by including the spatial distribution of
potential ignition sources and subsequent spread, activated
through a Monte Carlo technique in the fire spread simulation.
The goal here is to investigate the potential usefulness of this
approach as a possible tool for fire-risk mapping at high resolution.
The major product ultimately will be a decision support system for
actual fire management.

2. Methods
2.1. The simulation model

The main tool used in this risk analysis is FARSITE, a two-
dimensional fire spread simulation model developed by the USDA
Forest Service (Finney, 1998). FARSITE uses spatial information on
topography and fuels along with weather conditions. It is widely
used by the US National Park Service, USDA Forest Service and
other land management agencies to simulate the spread of
wildfires across the landscape (Keane et al, 2001; Stratton,
2004; Dasgupta et al., 2007; Ryu et al., 2007).

The model requires a variety of inputs, including landscape
information (various topography and vegetation cover maps), fuel
information (fuel models, moisture, conversions and adjustments),
weather conditions based on a concatenation of three weather
stations located in the study area (e.g., wind direction, air
temperature, relative humidity) and other miscellaneous data
(Table 1).

2.2. Study area

The study area (330 km? with an altitude range of 40-520 m) is
the entire region of Mt. Carmel, Israel, and surrounding lands,
excluding urban areas (Fig. 1). The Mt. Carmel ridge (35°E, 32°N)
rises from the northeastern Mediterranean Sea shore. Its Medi-
terranean climate is characterized by dry, hot summers and rainy
winters (annual precipitation ranges from 550 mm near the coastal
plane to 750 mm at the highest elevations).

Naveh (1975) characterized the region as a Mediterranean fire
bio-climate. The area provides a complex scene for mapping fire
spread, owing to its fine-scale heterogeneity in topography and
vegetation. Mt. Carmel has an annual average of 11 wildfires,
mostly during the dry period, from May through September
(Wittenberg et al., 2007). Eight large wildfires were recorded on
Mt. Carmel during the past 27 years, which consumed areas of 80—
530 ha each, and dozens of smaller fires. The sources of all fires in
the region are anthropogenic.

2.3. Simulation framework

The simulation session consisted of 500 runs, where each run
represented a single simulated fire. Ignition location and all fire
parameters were selected randomly for each run from predeter-
mined distributions (see below). To automate the process of multi-
simulation, we activated the FARSITE GUI using ArcView VBA Code,
and additional analysis scripts. The resulting 500 maps of fire
distribution were overlaid (fire distribution is the entire area burnt
in a specific fire); location-specific fire frequency served as a
surrogate for fire risk.

2.4. Model parameters

For each of the simulations, a calendar date was randomly
drawn from a uniform distribution of dates during the typical fire
period (June-August). The length of the fire was selected randomly
from a uniform distribution between 1 and 24 h, reflecting the
typical fire length in this region.

Climatic data (wind direction and intensity, air temperature
and relative humidity) were selected for the respective dates and
times of fire in each simulation, using actual data collected at 0.5 h
intervals during 2004 (this year represents typical average
weather) at three climatic stations: Haifa University, Ein Hashofet

Table 1

List of inputs and parameters used in FARSITE simulation.

Input type Input

Landscape (GIS layers) Latitude
Elevation map
Slope map
Aspect map
Fuel map
Vegetation map
Cover map

Fuel Adjustment

Fuel moisture

Climatic Wind speed and direction
Relative humidity

Temperature

Ignition probability Road probability map
Random percentage

Number of simulations
Miscellaneous Burn period

Ignition point Ignition point
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Fig. 1. Maps of the study area: (a) regional map showing the location of the Mt. Carmel study area in Israel, and (b) detailed map of the study area, showing roads and ignition

locations.

and Ein Carmel (Data source: Israel Meteorological Service). In
each simulation, a date +time and the corresponding climatic
record were drawn at random. Digital layers of elevation, aspect
and slope angle were derived from a digital elevation model (DEM)
at a spatial resolution of 25 x 25 m. All urban areas were digitized
using an orthophoto of the study area. In these urban regions, fuel
model #93 was applied without ignitions or fire propagation
(Anderson, 1982).

A canopy cover layer, used in FARSITE simulation, was
constructed for the entire study area. Canopy cover was defined

as the proportion of woody cover in a pixel (25 x 25 m). The basis
for this layer is a 2002 color orthophoto at a high spatial resolution
of 1 m per pixel. Cover was classified into two categories (woody
vegetation vs. open/herbaceous) using a supervised classification
system. Accuracy assessment was conducted against 100 sites,
which were visited in the field. Overall accuracy was 0.92. Woody
vegetation density at each 25 x 25 m cell was calculated, and this
density map was used in the simulation as the canopy cover layer.
The process and the product were described in detail in Carmel and

Stoler-Kavari (2006).
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2.5. Ignition risk

Most wildfires in Israel are anthropogenic, and thus a map of
human activity intensity would be a plausible surrogate for
ignition risk. Here, distance from the nearest road was used as a
surrogate for human activity (Riitters and Wickham, 2003) and of
ignition risk. All roads and hiking trails in the study area were
digitized, and buffer zones were created around them. A buffer
zone of 30 m was constructed around paved and non-paved roads,
and a buffer of 10 m was constructed around hiking trails and
footpaths (Fig. 1b). In the simulation session, 80% of all ignition
locations were selected randomly within the buffer zones, and 20%
were selected randomly within the entire study area.

2.6. Fuel models

A prerequisite of this type of study is to adjust the model in
order to account for Mediterranean conditions. In the present
study, fuel models of FARSITE (Anderson, 1982; Scott and Burgan,
2005) were applied to the Mediterranean vegetation (Tabara et al.,
2003; Arca et al., 2006; Duguy et al., 2007). The basis for the fuel
map was a detailed map of Mediterranean vegetation formations
on Mt. Carmel, based on an intensive survey of the entire area
(Lahav, 1983). Various changes have taken place in the region since
the map was constructed, and in particular, woody vegetation age
and density have typically increased (Kadmon and Harari-Kremer,
1999). However, the basic vegetation formations were not
replaced. A single fuel model was assigned to each major
vegetation formation in the eastern region (Table 2), and
adjustments were made to the fuel models of Scott and Burgan
(2005). The Mediterranean woodland scrub is much less flam-
mable than California chaparral, probably since there is much more
dead fuel in the chaparral (Jose Moerno, personal communication).
The documented rates of fire spread in Chaparral range between 15
and 80 km/h under moderate wind speeds of 2 m/s (Fujioka, 2002),
while the fastest reported rates of spread in Mediterranean
woodland scrub are 8-10 m/min (Gil Sapir, personal communica-
tion). The respective fuel model #4 (chaparral) was therefore
suppressed by a factor of two, as a conservative estimate. Fuel
model #1, applied to the Mediterranean herbaceous vegetation,
was also suppressed by a factor of two, since the herbaceous layer
in Mediterranean uplands is lower and thinner than in California,
due to heavy grazing (Naveh, 1967). Fuel model #10 (conifer
forests) was applied to the Eastern Mediterranean pine forests with
an adjustment factor of 4. This decision was made based on
ubiquitous indications from Spain, Greece, and Israel (Naveh,

Table 2
List of fuel models used in this study.
Eastern Mediterranean vegetation type USFS model name Model #
Anthropogenic elements Agricultural 93
Bare ground Bare ground 99
Calicotome dominated shrubland Low load humid 146
climate shrub
Ceratonia dominated woodland forest Chaparral 4
Herbaceous vegetation Short grass 1
Evergreen Oak (Quercus calliprinos) Chaparral 4
dominated forest
Deciduous Oak (Quercus ithaborensis) Chaparral 4
dominated woodland park
Pine dominated forest Timber 10
Pistacia lentiscus dominated shrubland Low load humid 146
climate shrub
Sarcopoterium spinosum dominated shrubland Moderate load 142

dry climate shrub

Fuel Models 1-99 follow (Anderson, 1982), and models 142 and 146 follow (Scott
and Burgan, 2005).

1994; Liodakis et al., 2003, 2006; Maestre and Cortina, 2004) on the
extreme flammability of Aleppo Pine (Pinus halepensis), which is
the species that forms the pine forests of Mt. Carmel. A rate of fire
spread of 70 m/min was recorded for this species in Greece (Vakalis
et al., 2004), which is much more than typical rates of spread in
pine forests in North America (Alexander and Cruz, 2006). Fig. 2
illustrates the distribution of fuel models in the study area.

2.7. Simulation model and historic fires

A general correspondence between the hotspots on the risk
maps and the location of historic fires may provide some indirect
support for the model. A spatial database of historic fires on Mt.
Carmel was compiled by Tesler et al. (2007). This database
contains the fire distribution (the entire area burnt by a specific
fire) for all large fires that occurred on Mt. Carmel between 1983
and 2006. To assess the degree of correspondence between the
simulated fire frequency map and historic fires, distributions of
historic fires were overlaid on the fire frequency map. For each
historic fire, the proportion of fire distribution coinciding with
each frequency level was tabulated. Each frequency level
corresponded to 10% of the study area. The null hypothesis here
is that the distribution of historic fires would be evenly spread
across frequency levels.

3. Results

The buffer zones that were drawn around all roads and paths on
the mountain comprised a total of ~25% of the study area. There
was a high density of ignition locations in the 500 simulation runs,
but in some areas away from roads, only few ignition locations
existed (Fig. 1b). The distribution of fuel models in Mt. Carmel
(Fig. 2) is characterized by a fine mosaic of models 10, 4, and 93
(planted pines, evergreen scrub, and agriculture, respectively). A
single large patch of model 1 (short grass) exists in the south part of
the mountain.

The results of 500 simulation runs of fire spread revealed a clear
pattern of fire frequency on Mt. Carmel, with most of the high
frequency areas concentrated in the northwestern part of the
region (Fig. 3). Areas that had been simulated burnt more than
eight times (hereafter termed hotspots) comprise ~20% of the
entire region. The major hotspots are, from north to south: The
University Forest, Beit Oren Forest, Nir Etzion Forest and Ofer
Forest (Fig. 3). The overall pattern of the risk map bears some
resemblance to the fuel map, where most of these hotspots
correspond to pine forests. However, some hotspots consist of oaks
or mixed forests (such as Nir Etzion), while some pine forests are
assigned as low-risk areas. The analysis of hotspot characteristics
corroborates this observation: the composition of fuel models in
the areas of hotspots was similar to the composition in the entire
study area. Similarly, there were no significant differences
between the hotspots and the rest of the area in the topography
or in the density of woody vegetation.

To assess the degree of correspondence between the risk map
and historic fires, the distributions of historic fires on Mt. Carmel
mapped by Tesler et al. (2007) were selected and overlaid on the
risk map. This analysis revealed that historic fires were strongly
associated with the zones of high fire frequency in the simulations
map (Fig. 4). In most fires, the burnt area corresponded mostly to
areas within the top 30% percentiles in the map of simulated fire
frequency, while only small parts of the distribution of those fires
was associated with lower fire frequencies map (i.e. areas of lower
risk in the simulated map). Two fires occurred more or less evenly
on high and low fire probability areas (1998b and 1999a). The area
of a single fire (1999b) corresponded mostly to areas of low fire
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Fig. 2. Map of the spatial pattern of fuel models for the Mt. Carmel region.

probability. Analysis of the traits of all fires (e.g., season, wind,
area) did not find any unique characteristics of those fires.

4. Discussion

Existing fire danger maps show fire risk at coarse spatial
resolution. For example, the fire-risk map currently used in Israel
assigns the same risk level to the entire study area (300 km?) (John
Woodcock, personal communication). In contrast, these results
show a very clear pattern of risk at fine resolution, where

neighboring areas (hundreds of meters apart) may have very
different risk levels due to combinations of topography, vegetation
cover, etc. The Mt. Carmel risk map highlights high risk as well as
low-risk regions (for example, the village of Ein-Hod is located
within a high-risk area, while other urban areas such as Osfia, Dalia
and Haifa are much less endangered).

Fire risk assessment focuses primarily on vegetation and fuel,
and risk maps are typically based on fuel models and/or vegetation
maps (e.g. Chuvieco et al., 2004; Hessburg et al., 2007; Jolly, 2007).
However, fire behavior (and therefore fire risk) is a complex
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Fig. 3. Spatial pattern of fire frequency in Mt. Carmel derived from 500 simulations of fire spread.

phenomenon, affected by local topography, microclimate, and
human impact, in addition to vegetation cover. The results of this
analysis demonstrate these complexities. The emerging pattern of
simulated fires seems to correspond to several layers indepen-
dently: fuel model map, the spread of ignition points (which, in this
study, is affected by the road pattern), and human impact. These
findings echo several recent studies that link the spatial pattern of
fires to factors such as the pattern of fuel (Chuvieco et al., 2004),

topography (Hessburg et al., 2007), weather (Arca et al., 2006), and
human impact (Tabara et al., 2003). Human impact is apparent at
agricultural and settlement locations that act as artificial blocks. It
was found (Tesler et al., 2007) that the distribution of the historic
fires on Mt. Carmel was not coincidental. Most fires occurred near
areas of intense human activity.

An existing fire-risk map currently in use by the Israel Forest
Authority portrays the entire Mt. Carmel as a homogeneous region
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with a single fire risk level. In contrast, these results reveal a
complex pattern at fine scales, where some local areas have higher
fire risk than others (Fig. 3). The patterns revealed in this figure,
resulting from many simulations, are supported by the distribution
of the majority of the large historic fires (Fig. 4).

Previous studies have presumed that fuel levels are the single
most important factor that would determine fire risk. In contrast,
these results show that there is no single main factor that
determines fire risk. No clear correspondence was found between
the spatial pattern of the fuel map, and the pattern frequency of
simulated fires. Other major factors such as topography and
vegetation also did not alone dominate the resulting pattern of fire
frequency. Apparently, there is an entirety of factors which,
together, act synergistically to affect fire risk.

These findings indicate the complex nature of forest fires, and
demonstrate that fuel load by itself may not be a sufficient
predictor of fire risk. This approach evaluates fire risk at high
resolution using most of the factors affecting fire behavior. These
efforts demonstrate the feasibility of this approach, and the value
of its product.

Recently, there have been several studies that assessed the
performance of FARSITE in predicting actual fires (Fujioka, 2002;
Arca et al., 2007; Duguy et al., 2007). These studies showed some
differences between the predicted and actual distribution of fire, in
a single specific fire. The approach used here involves numerous
simulations, where there is no attempt, or need, to predict the
exact location of any single fire. The focus is on the overall spatial
pattern of fire occurrence. This pattern would be depicted
coherently, regardless of the performance of the model for a
single fire, since mismatches in a single simulation are likely to be
cancelled out within the Monte Carlo process. The validation of this
approach should not be at the level of a single fire, but at the level
of the general pattern. The overall correspondence between
the simulations map and distributions of historic fires points to
the robustness of this method. It is therefore justified to use the
frequency map of simulated fires as a risk map for the relevant
region.

5. Conclusions

The general correspondence between areas of high fire
frequency in the simulations and areas of historic fires supports
the interpretation that areas of high simulated fire frequency are
high-risk areas. The Monte Carlo simulations of a fire spread model
described in this paper appear to be very useful in producing a
high-resolution fire-risk map. Such risk maps can prescribe fire
prevention activities at fine scales: border zoning, forest thinning

Y. Carmel et al./Forest Ecology and Management 257 (2009) 370-377

and allocation of fire fighting forces. In short, high-resolution fire-
risk maps will enable local managers to plan long-term strategic
fire prevention activities.
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