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The recent availability of species occurrence data from numerous sources, standardized and connected within a
single portal, has the potential to answer fundamental ecological questions. These aggregated big biodiversity
databases are prone to numerous data errors and biases. The data-user is responsible for identifying these errors
and assessing if the data are suitable for a given purpose. Complex technical skills are increasingly required for
handling and cleaning biodiversity data, while biodiversity scientists possessing these skills are rare. Here, we
estimate the effect of user-level data cleaning on species distribution model (SDM) performance. We implement
several simple and easy-to-execute data cleaning procedures, and evaluate the change in SDM performance.
Additionally, we examine if a certain group of species is more sensitive to the use of erroneous or unsuitable
data. The cleaning procedures used in this research improved SDM performance significantly, across all scales
and for all performance measures. The largest improvement in distribution models following data cleaning
was for small mammals (1 g–100 g). Data cleaning at the user level is crucial when using aggregated occurrence
data, and facilitating its implementation is a key factor in order to advance data-intensive biodiversity studies.
Adopting a more comprehensive approach for incorporating data cleaning as part of data analysis, will not
only improve the quality of biodiversity data, but will also impose a more appropriate usage of such data.
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1. Introduction

The recent availability of species occurrence data from numerous
sources, standardized and connected within a single portal, has the
potential to answer fundamental ecological questions (Peterson et al.,
2015). This integration and analysis of massive amounts of data is time-
ly, as researchers increasingly address questions at broader scales
(Hackett et al., 2008; Peterson et al., 2015). Until recently, biodiversity
data were scattered in different formats in natural history collections,
survey reports, and in the literature (Guralnick and Hill, 2009;
Michener and Jones, 2012). In the last fifteen years, efforts were made
to establish essential standardization in the biodiversity database struc-
ture. To-date, there are several centralized portals that aggregate large
volumes of biodiversity records from around the world and publish
them in common formats (Wieczorek et al., 2012). Among these net-
works of biodiversity databases, the Global Biodiversity Information
Facility (GBIF) is the largest and best known (Otegui, 2012; Yesson
et al., 2007). At present, theGBIF network provides access to 653million
biodiversity records from15,781 different data sources, includingmuse-
um collections, scientific studies, citizen science, surveys, and atlas data.
hay@tx.technion.ac.il
Since the year 2008, over 1286 peer-reviewed articles have reported
using GBIF-mediated data in analyses (GBIF, 2015). The subject areas
covered by these studies include climate change, human health, food
security, community ecology, biogeography, evolutionary ecology and
conservation biology (GBIF, 2013).

Large distributional databases as GBIF are prone to data errors, due
to incomplete or erroneous information at the publisher level (e.g. the
observer), errors during the publishing processes (e.g. formatting of
date information), as well as errors during the central harvesting and
indexing procedures (Otegui, 2012;Wieczorek et al., 2012). These prob-
lems have raised concerns that GBIF data cannot be reliably used for
biodiversity research (Mesibov, 2013; Yesson et al., 2007). Data cleaning
is a process used to determine inaccurate, incomplete, or unreasonable
data, and improve the quality through correction of detected errors and
omissions. The cleaning process may include format checks, complete-
ness checks, reasonableness checks, limit checks, etc. (Chapman,
2005a). These processes usually result in flagging, documenting, and
subsequent correcting or eliminating suspect records (Chapman,
2005a; Mathew et al., 2014). Other cleaning approaches may include
the review of the data to identify geographic, temporal or environmen-
tal outliers (Bennett, 2012), and visualization of the data to unveil
patterns and detect data anomalies (Chapman, 2005b; García-Roselló
et al., 2013; Geng et al., 2011; Otegui and Ariño, 2012). Complex
technical skills are increasingly required for handling and cleaning
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Table 1
Environmental variables used in the MaxEnt model. Elevation was derived from Diva-GIS
(Hijmans et al., 2012). NDVI, solar exposure and evaporation were derived from the
Australia Bureau of Meteorology (http://www.bom.gov.au). Land use was derived from
the Australian Department of Agriculture andWater Resources (http://www.agriculture.-
gov.au). All BIO variables were taken from Worldclim (Hijmans et al., 2005).

Variable
name Description

Elevation SRTM30 dataset. CGIAR-SRTM data aggregated to 30 s
NDVI Six-monthly NDVI Average for Australia from Dec. 2013–May 2014
Land Use Land Use of Australia, Version 4, 2005/2006 (September 2010

release)
Solar
exposure

Annual global solar exposure over Australia for the period
1990 to 2011.

Evaporation Average amount of water which evaporates from an open pan
annually

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp–min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
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biodiversity data,while biodiversity scientists possessing these skills are
rare (Peterson et al., 2015).

In addition to error cleaning procedures, another set of cleaning
routines could be conceived, which would select and remove data that
are not erroneous, but are unsuitable for a particular application or
purpose (Belbin et al., 2013; Boakes et al., 2010; Otegui et al., 2013a,b;
Yesson et al., 2007). This case-specific cleaning approach could enable
scientists to further improve the quality of biodiversity data with
espect to the specific research. For example, data with low spatial
resolution may be faulty when constructing high-resolution species
distribution model (Hefley et al., 2014; Maldonado et al., 2015;
Velásquez-Tibatá et al., 2015). Several studies that assess the quality of
biodiversity data exist (Ballesteros-Mejia et al., 2013; García-Roselló
et al., 2014; Mesibov, 2013; Otegui et al., 2013b; Vandepitte et al.,
2015). Yet, studies that actually quantify the effect of data cleaning are
scarce (e.g. Feeley and Silman, 2010; Maldonado et al., 2015). Although
procedures for data quality assessment are clearly vital, comprehensive
and practical tools facilitating it are still missing (Otegui and Guralnick,
2016). Species Distribution Modeling (SDM) is a commonly used
analytical method that estimates the relationship between species
records at sites, and environmental and spatial characteristics of those
sites, in order to estimate the response function and contribution of
environmental variables to the observed species distribution (de
Souza Muñoz et al., 2011; Elith et al., 2011; Franklin, 2009). The perfor-
mance of a distribution model could be a proxy for the strength of envi-
ronmental factors in affecting species distribution, assuming that we
select the appropriate environmental variables and use an appropriate
spatial scale (Fei and Yu, 2015; Franklin, 2009; Peterson et al., 2011;
Soininen and Luoto, 2014). A Maximum Entropy SDM approach
(MaxEnt) developed by Phillips et al. (2006) is the most widely used
SDM algorithm (Fourcade et al., 2014); due to its high performance
(Elith et al., 2010), capability to deal with presence-only data (Elith
et al., 2011), and low sensitivity to small sample sizes (Elith et al.,
2010). The value of data-cleaning can be estimated indirectly viamodel-
ing species-environment relationship; it is expected that when errone-
ous or unsuitable data are removed, species affinity to environmental
factors will increase, hence, the distribution model will perform better
(Fei and Yu, 2015; Hefley et al., 2014; Velásquez-Tibatá et al., 2015).

The goals of this study are to estimate the effect of user-level data
cleaning on SDM performance, and to exemplify the value of more
intensive and case-specific data cleaning, which are rarely conducted
by GBIF data users. We implement several relatively simple and easy-
to-execute data cleaning procedures, and test SDM performance
improvement, using GBIF occurrence data of Australian mammals, and
in various different spatial scales. In addition, we examine if a certain
group of species is more sensitive to erroneous or not suitable data
using various species grouping.

2. Methods

2.1. Study area and taxon

The focal group in this study is Australianmammals, due to the high-
resolution environmental data and relatively large number of mamma-
lian occurrence records in this continent.

2.2. Data retrieval

Occurrence data for all Australian mammals (1,041,941 records)
were downloaded in April 2014 from the Australian GBIF node (Atlas
of Living Australia, see Appendix A for a list of data sources). The
query used to download recordswas all records with class “Mammalia”.
In parallel, 24 raster layers of environmental variables in Australia
(elevation, land use, NDVI, and 21 climatic variables) were compiled
at a spatial resolution of 1 km2 (Table 1).
2.3. Data cleaning

Prior to data analysis, three essential cleaning procedures were car-
ried out (hereafter, ‘essential data cleaning’), in order to remove errone-
ous data: (a) Species taxonomic level cleaning: removal of records with
insufficient taxon rank identification (not identified at the species
level). (b) Removal of records with unrecognized species names,
based on the Atlas of Living Australia species backbone. (c) Removal of
records with missing or non-Australian coordinates. This data cleaning
represents the typical level of cleaning conducted by researchers. In
order to evaluate the specific value of user-level data cleaning, we con-
ducted an additional, more advanced and research-specific data
cleaning phase (hereafter, ‘user-level data cleaning’), which was de-
signed to the specific question of using GBIF data for building SDMs.
The user-level cleaningwas aimed at removing records that are not nec-
essarily erroneous, but are unsuitable for a specific application,which is,
in our case, high resolution species distribution models. Additionally, it
included fixing erroneous coordinates. Thus, these procedures included
the essential data cleaning mentioned above, and the following data
checks: coordinate data checks and filtering, to remove records with
insufficient spatial accuracy: (a) specific data checks to salvage records
with badly formatted coordinates (e.g. Degree Minute Second format,
a string instead of a number), switched longitude and latitude, and
numerical sign confusion. (b) Removal of coordinates located exactly
at the center of Australia (may suggest incorrect georeferencing).
(c) Removal of records of domesticated or extinct species due to its
discrepancy with our research question. (d) Removal of records taken
before the year 1990 due to high potential of insufficient spatial accura-
cy. (e) Removal of records with unknown year. (f) Removal of records
with longitude and latitude precision with less than three decimal
digits. The effectiveness of the data in building SDMs before- and after
the user level data cleaning was compared.

http://www.agriculture.gov.au
http://www.agriculture.gov.au
http://www.agriculture.gov.au


Fig. 1. Grids used in this study: (a) 100 km, (b) 200 km, (c) 300 km, (d) 400 km, (e) WWF Ecoregions (Olson et al., 2001) and (f) all of Australia.
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Reconciliation to different web services, for coordinate validation,
taxonomic identification, and the retrieval of biological traits for all
Australian mammals was carried out using Open Refine (Verborgh
and De Wilde, 2013). Australia was dissected to five different grids
(100 km, 200 km, 300 km, 400 and WWF eco-regions) using QGIS
(QGIS Development Team, 2013), in order to test the effect of cleaning
at six different spatial scales (five grids and all of Australia, see Fig. 1).

2.4. Species Distribution Model (SDM)

A MaxEnt model (Phillips et al., 2006) was performed for each
species in each grid cell. Only cells/regions above 7000 km2were includ-
ed in the analysis. The following procedures were conducted separately
Table 2
Details of essential- and the user-level data cleaning. Essential data cleaning are cleaning proce
checks seldom applied by researchers.

Type of cleaning Issue (data check)

Essential
data cleaning

Initial number of records downloaded from AL
Species name was not recognized by ALA1

Insufficient taxon rank identification
Records with missing or non-Australian coordi
Total

Essential + User level data cleaning Initial number of records downloaded from AL
Wrong coordinate systems
coordinates as string
Switched Longitude & Latitude
Numerical sign confusion
Records with missing or non-Australian coordi
Coordinates exactly in center of Australia
Longitude & Latitude precision less than 3 digi
Records collected before the year 1990
Records with unknown year
Species name was not recognized by ALA
Insufficient taxon rank identification
Domesticated species
Extinct species
Total

1 Atlas of Living Australia.
for each cell/region: For eachmammal species present in the cell/region,
70–100 occurrence data points were randomly sampled. A species with
less than 70 occurrence data points (with unique coordinates) in a spe-
cific cell/region was omitted from further analysis in that particular cell.
In addition, 1000 background points for each species were randomly
sampled. For each presence/background record, the values of the 24 en-
vironmental variables were extracted and recorded. A 10-fold cross-
validation procedurewas used to estimate errors around predictive per-
formance on held-out data (Elith et al., 2011). The gain and AUC values
were recorded for each model. Gain is a measure for goodness of fit of
models. It represents the likelihood of presence records compared to
background records (Phillips, 2008). A gain of 1.1means that an average
presence location has a relative probability of e1.1, which is three times
dures often applied by researchers. User-level data cleaning contains more advanced data

# of Records Action

A1 1,041,941 –
3502 Removal

89,775 Removal
nate 76,735 Removal

A dataset of 939,198 records Removal of 102,743 records
(9.86%)

A1 1,041,941 –
8 Repair

270 Repair
0 Repair
2 Repair

nate 76,455 Removal
30 Removal

ts 292,541 Removal
350,403 Removal
54,481 Removal
3502 Removal

89,775 Removal
16,190 Removal
1269 Removal

A dataset of 515,479 records Removal of 526,462 records (50.52%)



Table 3
The average increase (in percentage) in performance measures after user level cleaning procedures, across six spatial scales. Asterisks indicate levels of statistical significance of a one-
tailed paired t-test (***P b 0.001). All five performance measurements exhibit significant improvement across various scales.

Grid

Regularized training gain Unregularized training gain Test gain Training AUC Test AUC

Mean (±s.d) Mean (±s.d) Mean (±s.d) Mean (±s.d) Mean (±s.d)

100 km 9.95***
(33.86)

7.67***
(22.67)

10.72*** (40.04) 0.91*** (3.00) 1.74*** (7.11)

200 km 11.21***
(25.65)

8.79***
(20.18)

16.48*** (41.11) 1.17*** (2.75) 2.26*** (5.58)

300 km 13.05***
(29.56)

10.62*** (23.17) 17.53*** (41.44) 1.27*** (2.94) 2.28*** (5.51)

400 km 15.89***
(29.43)

12.91*** (23.45) 23.71*** (41.04) 1.59*** (3.04) 3.17*** (5.62)

Ecoregions 24.43***
(45.34)

18.58*** (31.07) 27.85*** (44.62) 2.22*** (3.53) 4.41*** (7.47)

All Australia 8.28***
(13.66)

6.42***
(10.73)

11.65*** (18.50) 0.47*** (1.16) 1.14*** (2.24)
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higher than an average background point. AUC is the area under the
curve of the receiver operating characteristic plot (Swets, 1988). It
measures the overall discriminatory ability of the model by quantifying
the probability that themodel correctly ranks a random presence local-
ity higher than a random background pixel (Phillips et al., 2006). AUC
ranges between 0.5 (model that performs no better than random) and
1 (model with perfect discrimination).

2.5. SDM performance: essential cleaning vs. user-level cleaning

MaxEnt model generates three gain measures and two AUC mea-
sures: Regularized training gain accounts for the number of predictors
in the model to address overfitting; Unregularized training gain has no
compensation for the number of predictors in the model; and Test gain
is calculated from presence records held out to test the model. Training
AUC calculates AUC using the training data; and Test AUC calculates AUC
using the test data. In order to estimate the improvement of the SDM
performance after the user level data cleaning, all five measures were
compared for each species in each cell, after essential data cleaning,
and after the user level cleaning, using one-tailed paired Z-test.

2.6. Null model (random thinning model)

A null model was constructed in order to test the effects of non-
random thinning of the data resulting from data cleaning (hereafter,
random thinning model). User level data cleaning often involves loss
of large amount of data (such as in the present study). Such data
thinning can cause ‘shrinking’ of the observed niche of a species, and
lead to a stronger affinity between the inferred species distribution
and environmental factors, which, in turn, may artificially increase
SDM performance (Peterson et al., 2011). The user level data cleaning
reduced the database by 53% to 515,479 records; for this model, the
database was reduced to the same size by filtering out randomly select-
ed records. It is expected that if thinning of the data has no effect on
SDM performance measures, the results of the random thinning
Table 4
Unregularized training gain analysis for different spatial grids. Gain values were compared afte
cell refers to the number of unique species-cell combination (sample size).

Grid

Mean gain values gain increa

Essential cleaning User-level cleaning # species-c

100 km 1.11 1.23 407 (64.2%
200 km 0.96 1.06 373 (67%)
300 km 1.26 1.35 345 (67.6%
400 km 1.28 1.41 325 (72.4%
WWF Ecoregions 1.32 1.48 271 (76.3%
All Australia 2.10 2.22 109 (74.1%
Average (%) 70.3%
model would yield similar results to the original model prior user
level cleaning.

2.7. Group analysis

We examined if data cleaning affects certain groups of species more
than others. The grouping was based on body size and trophic level,
resulting in six groups: small herbivores (1 g–100 g), medium size her-
bivores (100 g–5000 g), large herbivores (5000 g+), small carnivores
(1 g–100 g), medium size carnivores (100 g–5000 g) and all bats. We
conducted a Friedman test (Friedman, 1937) between the groups for
each performance measure. If a test was found significant, a pairwise
post-hoc Mann–Whitney test was performed with Benjamini &
Hochberg corrections methods (Benjamini and Hochberg, 1995).

3. Results

The essential data cleaning procedures filtered out 9.9% of the
downloaded data, leaving 939,198 records and 291 species. The user
level cleaning procedures filtered out 50.5% of the downloaded data,
leaving 515,479 records representing 242 species. Table 2 provides de-
tails on all cleaning procedures.

One-tailed paired Z-test was used to compare the results after essen-
tial data cleaning vs. after user level cleaning. All paired Z-tests showed
a significant increase in performance (α ≪ 0.001) after the user level
data cleaning, in all spatial scales and for all performance measures
(Table 3).

When examining the effect size of the change, gainmeasures yielded
an average increase of 7.67%–27.85% across the different grids, and the
AUC measures showed an increase of 0.91%–4.4% after data cleaning
(Table 3). AUCmeasureswere apparently less sensitive to data cleaning,
presumably due to the relatively high AUC values even before data
cleaning (average AUC was 0.88). All five measures were highly corre-
lated (Pearson-r N 0.89, p-value ≪ 0.001 in all cases). At the scale of
the entire continent, 109 (74.1%) of the mammal SDMs showed an
r essential- and user-level data cleaning, in each species/grid cell combinations. # species-

se gain decrease

ell (%)
Mean
% gain increase # species-cell (%) Mean % gain decrease

) +17.31% 227 (35.8%) −9.63%
+17.40% 184 (33%) −8.63%

) +19.88% 165 (32.4%) −8.73%
) +21.17% 124 (27.6) −8.72%
) +26.70% 84 (23.7%) −8.40%
) +10.29% 38 (25.9%) −4.67%

+18.8% 29.73% −8.13%



Table 5
The average values of all performance measures across all spatial scales, for three model types: after essential data cleaning; after random thinning of the data; and after user level data
cleaning. The random thinning models present values closer to the essential data cleaning models and not to the user level data cleaning.

100 km 200 km 300 km 400 km Ecoregions All Australia

Regularized training gain Essential cleaning 0.895 0.974 0.982 1.020 1.023 1.917
Random thinning 0.823 0.940 0.963 1.030 1.027 1.926
User level cleaning 0.960 1.059 1.079 1.145 1.207 2.050

Unregularized training gain Essential cleaning 1.158 1.243 1.248 1.278 1.283 2.100
Random thinning 1.078 1.203 1.23 1.296 1.297 2.109
User level cleaning 1.229 1.332 1.354 1.414 1.475 2.220

Test gain Essential cleaning 0.764 0.836 0.846 0.879 0.879 1.865
Random thinning 0.679 0.793 0.810 0.880 0.879 1.868
User level cleaning 0.847 0.947 0.966 1.045 1.115 2.037

Training AUC Essential cleaning 0.873 0.886 0.888 0.889 0.893 0.951
Random thinning 0.864 0.881 0.885 0.892 0.891 0.950
User level cleaning 0.882 0.896 0.898 0.903 0.910 0.960

Test AUC Essential cleaning 0.801 0.817 0.821 0.825 0.825 0.932
Random thinning 0.758 0.812 0.815 0.826 0.825 0.930
User level cleaning 0.813 0.835 0.839 0.850 0.859 0.942
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improvement in Unregularized training gain, while 38 (25.9%)mammal
SDMs revealed a decrease in performance, following data-cleaning. For
the ecoregion-specific SDMs, 271 (76.3%) of the SDMs increased
Fig. 2. Relative performance of SDMs of different functional groups. BatsAll — all bats, H1 — s
herbivores (5000 g+), C1 — small carnivores (1 g–100 g), C2 — medium size carnivores (10
test with Benjamini and Hochberg (1995) correction method, P-value b0.1.
performance (mean gain increase of 26.70%), and 84 (23.7%) decreased
their performance. The results for the other spatial scales were similar
(Table 4).
mall herbivores (1 g–100 g), H2 — medium size herbivores (100 g–5000 g), H3 — large
0 g–5000 g). In black frame a pairwise comparison of all groups using a Mann–Whitney
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Performance measures of the post-thinning SDMs (the random
thinning model) were similar to the respective pre-thinning SDMs,
and lower than those of the SDMs built following user level data
cleaning (Table 5). The increase in SDM performance was higher in
small herbivores and small carnivores than in other groups (Fig. 2).

4. Discussion

We estimated the effect of tailored and easy-to-execute data
cleaning on SDM performance at different spatial scales, using occur-
rence data of Australian mammals (over 1,000,000 records). The
study-specific cleaning procedures improved SDM performance signifi-
cantly across all the studied scales. SDMs and cleaning procedures were
simple, basic, and designed for all Australian mammals as one group;
fine-tuning them to a specific species or functional group would
probably result in higher value of data cleaning and bigger improve-
ments in performance.

Quantifying the effectiveness of data cleaning using SDMs is novel.
Datasets like GBIF are frequently used to develop species distribution
models, which are widely used in a range of fields and applications
(Elith and Leathwick, 2009; Naimi and Ara, 2016; Peterson et al.,
2011). Several methodological approaches have been developed to
improve SDMs built with biased data (Bierman et al., 2010; Botts
et al., 2012; Colwell and Coddington, 1994; Kadmon et al., 2004; Kent
and Carmel, 2011; Rocchini et al., 2011; Syfert et al., 2013), yet quanti-
tative tools to evaluate data quality are still scarce (Fei and Yu, 2015;
Otegui and Guralnick, 2016). Our study may facilitate the development
of different data quality indices (e.g. Apparent Quality Index develop by
GBIF Spain; Representativeness and Completeness Index develop by Fei
and Yu, 2015).

AUC is one of the most commonly used statistics to characterize
model performance (Yackulic et al., 2013). However, its use has
been highly criticized, especially in a presence-only modeling frame-
work (Jiménez-Valverde et al., 2013; Lobo et al., 2008; Yackulic et al.,
2013), since it ignores the predicted probability values and the
goodness-of-fit of the model (Yackulic et al., 2013). Here, the use of all
of MaxEnt performance measures was valid, since all comparisons
were made between models of the same single species, in the same
grid cell, and using the same model characteristics (predictors, back-
ground data, etc.). Nevertheless, our results show that the low informa-
tive value, and thus the low sensitivity of AUC limit its use in presence-
only modeling.

Choosing the appropriate spatial configuration when evaluating a
species distribution or an ecological niche is imperative (Elith and
Graham, 2009). Therefore, we evaluated the effect of data cleaning
across six different spatial scales. The results suggest that cleaning
procedures were effective regardless of spatial grid configuration. This
finding showcase the value of user-level data cleaning for big data,
regardless of spatial scale.

We found that small mammals (1 g–100 g) were most affected by
data cleaning (Fig. 2), possibly because retaining only coordinates
with high spatial accuracy has a stronger effect on organisms with
lower movement capabilities (Farjalla et al., 2012; Pöyry et al., 2008).
High spatial accuracy and fine scale is crucial for studying distribution
of low-mobility organisms.

In a typical research, data are very expensive, and filtering/removing
big proportion of the data is inconceivable. In contrast, in the big-data
world, data are plentiful and relatively inexpensive, and it is sometimes
worthwhile to dispose large volumes of data for the sake of data quality.
Here, for example, we disposed half a million records, which consisted
50% of the database, in order to increase data quality. Thus, tools for
easy yet advanced query of the data are as important as tools for detect-
ing and correcting errors (Vandepitte et al., 2015). The results of our
study stress the need for data validation and cleaning tools that incorpo-
rate customizable techniques, for example by developing an R package.
This will enable biodiversity researchers a much better understanding
and control on data retrieved from large distributional databases as
GBIF.

Improving the quality of biodiversity research, in some measure, is
based on improving users-level data cleaning tools and skills. Adopting
amore comprehensive approach for incorporating data cleaning as part
of data analysis will not only improve the quality of biodiversity data,
but will impose a more appropriate usage of such data. This can greatly
serve the scientific community and consequently our ability to address
more accurately urgent conservation issues.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecoinf.2016.06.001.
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