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ABSTRACT 

The relationships between species and their environment is a central issue in ecology. Understanding 

these relationships can contribute to the conservation of biodiversity. However, there is a lack of data 

to conduct large scale species composition analyses, needed for large scale conservation planning. 

This work attempts to promote the scientific tools of biodiversity conservation along two lines. First, 

methods to produce biological and environmental surrogates for biodiversity were compared, and a 

new measure of surrogate efficiency was proposed. Results indicated that the most efficient 

classification method for biodiversity surrogates production is Ward's method of minimum variance. 

In addition, a new type of surrogates was developed, the bio-environmental surrogates, combining 

biological and environmental data to improve the representativeness of surrogates. The new hybrid 

surrogates represented almost all of the target species, regardless of the specific approach taken to 

produce them. The second principal objective of this work was to quantify the variation in the 

relationships between species composition and its environmental determinants as a function of spatial 

scale. The main problem was data availability. At large scales, the only available data is presence-

only data, which is considered inappropriate for such analyses. Thus, a simulation study was 

conducted, with virtual species based on real environmental data and true species occurrence data 

from the Global Biodiversity Information Facility, to test whether presence-only data are sufficient 

for large scale species composition analyses. The results of the simulation tests allowed me to 

commence with the final step of this work, which was analyses of the environmental determinants of 

terrestrial mammal composition in the contiguous USA, at varying spatial scales. The results of these 

analyses revealed that climatic parameters such as temperature and precipitation are the most 

important environmental variables determining species composition. Land-use – land-cover 

parameters were also relatively influential at small and intermediate scales; however their effect 

decreased at larger scales. Topography and primary productivity were of lesser importance at the 
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 2 

scales studied, and their effect further decreased with increasing scale. The two lines of progress 

achieved by this work may be combined to enhance the abilities of conservation scientists and 

practitioners to protect biodiversity at large scales. In light of the extremely high species extinction 

rate, estimated at ~100 – 1000 times higher than the background rate, and in light of latest climatic 

changes and habitat loss through land-use alterations both processes directly or indirectly related to 

human activity in past century, urgent actions are needed in order to protect the remaining 

biodiversity. This work contributes to these efforts in a substantial manner.   
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Terminology 

Throughout the dissertation I use several terms describing different spatial and other elements. These 

terms are listed in the table below and the list of symbols and abbreviations. 

Table i: Commonly used terms used throughout the dissertation 

Term Description 

Domain An area within the study area consisting of sites with similar characteristics 

 

Grid-cell The basic unit in a grid dividing the study area into equal-size units, equivalent 

to the grain size of the analysis 

Grain size The resolution of the analysis. Determined by the size of grid-cells 

Extent The geographical size of the area of interest, or the entire grid 

Site A single grid-cell within a domain 

Representativeness The efficiency of surrogates in representing target species within the study area 

Evenness The level of similarity in size between different domains of a specific surrogate 

map 

Symbols and abbreviations  

P-O – Presence-only 

P-A – Presence-absence 

BES – Bio-environmental surrogates 

NDVI – Normalized Difference Vegetation Index 

DEM – Digital Elevation Model 

GIS – Geographic Information System 

mdt1 – Mean Daily Temperature in the Coldest Month 

mdt8 – Mean Daily Temperature in the Hottest Month 

CCA – Canonical Correspondence Analysis 

DTR – Distance to Nearest Road 

DTU – Distance to Nearest Urban area 

GBIF – Global Biodiversity Information Facility 
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 4 

 λ– The proportional contribution of a variable to the eigenvalue of the first axis of a canonical 

analysis 

alt – Altitude  

Temp – Temperature 

TempS – Temperature Seasonality 

Prec – Precipitation 

PrecS – Precipitation Seasonality 

MaxT – Maximum Temperature 

MinT – Minimum Temperature 

LULC – Land-Use/Land-Cover  
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INTRODUCTION 

Background and general overview  

The relationships between species and their environment stand at the core of the science of ecology. 

Although it is considered a relatively new science, ecological observations date back to the Greek 

philosophers. However, the first modern ecologists were Darwin and Wallace, who were the first to 

relate spatial patterns of species to their physical environment (Darwin 1859 chapter 3, p. 86-110, 

Wallace 1891, chapter 1, p. 3-19). This work attempts to address the question of biodiversity 

distribution determinants in two manners, a basic theoretical analysis of multiple scale species – 

environment relationships; and an applicative investigation of surrogates for biodiversity and their 

efficiency as biodiversity conservation tools (Fig. i). Understanding the relationships between species 

composition and environmental variables may considerably improve the ability to conserve 

biodiversity, which is important in light of the species extinction crisis. Chapter two presents a 

multiscale quantification of the relationships between species composition and environmental 

conditions. Although the concept of relating environmental conditions to species composition is not 

new (Whittaker 1956, Pianka 1966, MacArthur 1972).  Such analyses require data on the distribution 

of the entire species pool at very large spatial extents. However, data for such analyses are only 

available from biological collections, in the form of presence-only (P-O) data. P-O data are 

considered inappropriate for species composition analyses (See 'data availability' section and chapter 

one for a detailed explanation). In order to examine whether the data collection method (i.e. presence-

only versus presence-absence) has a significant effect on the results of species-environment analyses, 

at large spatial scales a simulation study was conducted prior to analyzing actual species data. These 

analyses are presented in chapter one. 
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The second path of investigation in this work was the efficiency of biodiversity surrogacy. The 

importance of surrogacy stems from a lack of distributional data for most elements of biodiversity, 

and in most regions of the world. Chapters 3 and 4 deal directly with methods to improve the 

production process of surrogates for biodiversity, by means of comparison between common methods 

to produce surrogates for biodiversity, and proposing an extensive approach to evaluating the 

efficiency of the resulting surrogate maps in representing biodiversity. In addition a novel approach to 

producing surrogates is proposed, based on both biological and environmental data, combined into 

bio-environmental surrogates.  

 

 

Figure i: A schematic flow-chart illustrating the paths of the different parts of the project. 

Major motivation for the study 

The rate by which species are going extinct is constantly increasing since the time of the industrial 

revolution, and is now approximately 1,000 times higher than the background extinction rate 
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(Ricketts et al. 2005). Most of this loss is attributed to human induced alterations of the environment, 

such as habitat loss, air, water and soil pollution and direct exploitation (Ehrlich and Wilson 1991, 

Shriner et al. 2006). Such high rates of extinction might have devastating effects on the well being of 

the entire planet, humans included. The disappearance of so many species may affect the functioning 

of natural ecosystems, to the level that ecosystem services – all the 'goods' provided to humans by 

various elements of the ecosystem – may be hampered (Worm et al. 2006). Some ecosystem services 

have obvious economic value, such as foods, drugs or construction materials. Less conspicuous 

services like reducing greenhouse gas concentrations in the atmosphere by carbon sequestration, 

drinking water purification by seepage, etc (Costanza et al. 1997) are crucial, but quantifying their 

value in monetary terms is not straight forward. Extinction rates have risen so high, that there is a dire 

need for actions to bring them to a halt, or at least slow them down substantially.  

The aim of this study is to promote the understanding of processes in fields that might help in the 

slowing down of species extinction rates directly, by improving the efficiency of biodiversity 

surrogates as conservation tools (chapters 3 and 4) and indirectly, by improving the understanding of 

the relationships between species and their environment, and exploring additional information 

sources towards that end (chapters 1 and 2). 

Species-environment relationships 

Over the last 50-60 years there is continuous effort to come up with a single hypothesis explaining all 

observed patterns in the distribution of biodiversity, whether single species or entire ecosystems (e.g. 

Whittaker 1956, 1967, MacArthur 1972). The most obvious pattern is the latitudinal gradient in 

species richness, driven by varying of resource availability levels, of resources such as energy 

availability, evapotranspiration potentials and geometric constraints (limited space) (Pianka 1966, 

Crawley and Harral 2001, Whittaker et al. 2001, Allen et al. 2002, Algar et al. 2007). Species 

composition, an element of biodiversity that contains more information than species richness, 
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however is more difficult to explore, due to a lack of means for quantitative representation, was less 

frequently studied (Ferrier and Guisan 2006). Theories concerning patterns of species composition 

mainly include three conceptual models. A neutral model suggests that all the species are 

environmentally and competitively equal, and patterns are caused by random dispersal events 

(Hubbell 1997, 2005). H’ubbles theory is restricted to communities consisting of species in a sing le

trophic level, and asserts that all the species in a given community have the same probability to 

inhabit free space created by disturbance, thus the only factors responsible for species assembly in the 

community are stochastic processes affecting propagule dispersal. Unlike the theory on island 

biogeography (MacArthur and Wilson 1967), which is also a neutral theory of species assembly, 

based on the assumption that each species has the same probability to inhabit an island, and that 

species accumulation is governed by the size of the island and its distance from the mainland, 

Hubble’s theory assumes that each individual has the same probability for settling in a new habitat 

patch (Hubble 1997). The environmental model relates species composition to environmental 

conditions (e.g. Whittaker 1956, 1967). This model is based on the ecological niche theory. Each 

species reacts to its environment according to its physiological and ecological requirements. These 

relationships dictate the spec’ies extent of occurrence. e ,Thusnvironmental conditions dictate  the

presence of species in a given location. Whittaker (1956) concluded that most of the variability in tree 

species composition on the Great Smoky Mountains can be explained by two environmental 

gradients. According to the third model, species composition is determined by inter-specific 

interactions within and among trophic levels, through mechanisms of competitive displacement, local 

extinctions caused by predation etc. (May 1984). These models are non-mutually exclusive (Legendre 

et al. 2005). Chapter 2 of this study concentrates on the environmental model, attempting to 

understand which environmental factors are important at which spatial scale. 
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Spatial scale in biodiversity studies 

The question of scale has become a key issue in ecological research. Since different processes may 

play a role at different scales, and since different organisms perceive the environment at different 

scales (Levin 2000), single-scale analyses may be incomplete. However, most studies on patterns of 

species distributions, richness and composition are still carried out at a single spatial scale. It is now 

well accepted that there is no 'right' scale for biodiversity analyses, regardless of organization level 

(Willis and Whittaker 2002, Wagner and Fortin 2005). Studies that were conducted at multiple scales 

either define scale qualitatively (Cushman and McGarigal 2002) or change only grain or extent of the 

analysis. However, the behavior of scale is not intuitive (Wiens 1989), since it is characterized by 

both grain and extent; modification of each component alone while keeping the other constant is not a 

complete change of scale, and thus may yield misleading conclusions, due to both principal and 

statistical difficulties. A change of grain alone does not constitute a full change of scale, rather it 

alters the resolution of the analysis within a single scale, because both the biotic and a-biotic 

components of the studied system remains unaltered, thus it affects the amount of detail in the 

analysis of the reaction of species to the analyzed gradients, without altering the length of these 

gradients. A change of extent without a change of grain only affects the length of environmental 

gradients observed, while pointing out the same environmental processes.  

Implications for biodiversity conservation 

Methods used in decision making for biodiversity conservation worldwide changed considerably over 

the years (Poiani et al. 2000). In the past, decisions were taken ad hoc and were aimed at preserving 

areas that were not used for other (profitable) purposes and which contained high biodiversity and/or 

'highly popular' species, in order to attract tourism (Maddock and Du Plessis 1999, Prendergast et al. 

1999). During the past few decades, focus shifted towards conservation of endangered species, and 

reserves were selected according to the distribution of those species (Stoms 2000). Recently, a more 
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'holistic' approach, also called 'coarse filter', has become more widespread. According to the 'coarse 

filter' approach, entire ecosystems and landscape units should be the aim of conservation, rather than 

single species (Margules and Stein 1989, Maddock and Du Plessis 1999, Schwartz 1999, Bonn and 

Gaston 2005). In addition, it is necessary to conserve a variety of habitats and ecological processes 

which facilitate the persistence of a myriad of species (Noss 1987, Pressey et al. 1993, Stoms 2000). 

Applying such approaches in conservation decision making requires knowledge of the distribution 

ranges of all species. Nevertheless, in most regions of the world species distributions data are partial 

at best, neither is it feasible to collect such data for all species. One way to deal with that problem is 

by using habitat-suitability modeling (Guisan and Zimmermann 2000). Habitat-suitability models rely 

on Hutchinson's niche theory (Hutchinson 1957, Vandermeer 1972), relating distributional data to 

environmental parameters in surveyed areas, defining the species' niche. By finding areas containing 

similar conditions outside the surveyed area, it is possible to estimate the presence or absence of the 

species in un-surveyed areas. These models include General Linear Models, General Additive Models 

and machine learning models such as Neural Networks. However, models that predict species 

presence in un-surveyed areas require dedicated survey effort for each species individually in a 

confounded area, which is both time consuming and expensive. In addition, they are imperfect, and 

when dealing with a multitude of species, uncertainty accumulates and is very difficult to incorporate 

into the analysis reliably. Thus, it is widely accepted to use surrogates for biodiversity (Belbin 1993, 

1995, Ferrier and Watson 1997, Fairbanks 2000, Carmel and Stoller-Cavari 2006, Sarkar et al. 2006) 

which is a less expensive method, and is probably also less prone to accumulating uncertainty. 

Although most conservation planning and actions are conducted at relatively local scales of 10
2
-10

3
 

km, most studies on surrogate efficiency take place at much larger scales (10
4
-10

6
 km) (Carmel and 

Stoller-Cavari 2006, Rodrigues and Brooks 2007). Such studies rely on either range maps from 

atlases or low resolution environmental data (see review by Rodrigues and Brook 2007). While 
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results might indicate strong congruence in patterns over such large spatial extents, they might not be 

consistent at extents relevant for conservation. Studies conducted at relatively small spatial scales 

usually indicate that both types of surrogates perform better than random choice of conservation areas 

(Sauberer et al. 2004, Trakhtenbrot and Kadmon 2005, Carmel and Stoller-Cavari 2006, Trakhtenbrot 

and Kadmon 2006),  

Data availability 

A common thread in every part of this work is the lack of reliable data on the distributions of the 

analyzed species. The study of species composition – environment relationships requires spatial data 

on large numbers of species, and for large geographical extents. Such data are scarce, especially in 

the most diverse areas of the world (Elith et al. 2006, Ferrier and Guisan 2006, Loiselle et al. 2008). 

On the other hand, availability of occurrence records via internet is rapidly growing (e.g. the Global 

Biodiversity Information Facility, GBIF 2008). Occurrence data are also termed presence-only data, 

since they lack explicit information on unvisited locations, and are thus considered inappropriate for 

analyzing species-environment relationships. There is a large body of literature regarding the use of 

presence-only data in species distribution modeling, and in species richness patterns, but with no 

conclusive evidence (Brotons et al. 2004, Elith et al. 2006, Tsoar et al. 2007).  

Research objectives  

This study is concerned with the relationships between species and environment, how these 

relationships are affected by spatial scale, and in turn, how they affect surrogates for biodiversity. 

Thus, the main research objectives and questions are: 

Objectives 

1. To combine environmental and biological surrogates into a new type of surrogates (Bio-

Environmental Surrogates).  
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2. To evaluate their efficiency in representing biodiversity, and compare it to the efficiency of 

existing types of surrogates. 

3. To understand the environmental determinants of biodiversity patterns at multiple spatial 

scales. 

4.  To quantify the variation in the effect of different environmental parameters on species 

composition at various spatial scales. 

Ideally both path of the study would be carried out in the same geographic area. However, data 

limitations dictated the selection of study sites according to the amount of available data. In the 

contiguous USA there is a large amount of collection data, digitized and readily available via the 

internet. On Mt. Carmel, on the other hand, I had access to high resolution, high quality dataset, 

suitable for a surrogacy study at small spatial scales.   
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Chapter 1   

Presence-only vs. Presence-absence data in species composition determinant analyses 

INTRODUCTION 

Studying the relationships between species and their physical environment requires data on the 

distribution of species in space. Ideally, such analyses would be based on presence-absence data (P-

A), collected through dedicated surveys. However, such data are scarce, and exist only for areas of 

small spatial extent, and are especially uncommon in the most diverse areas of the planet (Elith et al. 

2006, Ferrier and Guisan 2006, Loiselle et al. 2008, Sastre and Lobo 2009). Presence-only (P-O) 

data have various shortcomings in regards to analyses of species-environment relationships, for 

example (a) They lack explicit information on unvisited locations, and (b) they might contain errors 

and biases. Potential biases include spatial bias (concentration of observations in easily accessible 

locations and over sampling of species-rich areas, Ponder et al. 2001, Kadmon et al. 2004), 

taxonomic bias (over-representation of certain species, Hijmans et al. 2000), and environmental bias 

(under-representation of areas at the edges of the environmental gradient, Loiselle et al. 2008). In 

order to quantify the amount of bias in the data set, analyses were carried out to quantify the amount 

of environmental and geographical bias in a relatively large sample of observation locations in 

GBIF (GBIF data portal, http://data.gbif.org). In contrast to these shortcomings, such data are 

readily available in large quantities and, due to an accelerating effort to digitize and publicize these 

data, are also highly accessible (Graham et al. 2004). The validity of using presence-only data in 

ecological analyses was studied several times. Results have been inconclusive, with some authors 

reporting sufficiency of presence-only data (Elith, Graham et al. 2006; Loiselle, Jorgensen et al. 

2008), superiority of presence-absence data (Guisan and Zimmermann 2000; Hirzel, Helfer et al. 

2001; Graham and Hijmans 2006), or differential success for different species (Elith et al. 2006, 
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Tsoar et al. 2007). The focus of most studies was the distribution of a single species or modeling 

species richness patterns. Models that utilize P-O data to predict species distributions in un-

surveyed areas include ENFA (Ecological Niche Factor Analysis) which compares the distributions 

of environmental factors (termed EcoGepgraphical Variables) (i,e. mean and variance) in locations 

where the species was observed with the distributions of the same EGVs in the entire study area 

(Hirzel et al. 2002). A different model (MaxEnt) estimates the potential distribution of species based 

on machine learning approach (Phillips et al. 2006).  

Ferrier and Guisan (2006) reviewed approaches to community-level modeling. They used both P-A 

P-O data for their models, and concluded that P-O data are problematic for such analyses. They 

stated that due to data limitations, analyses of species composition are limited to areas of small 

spatial extent. To the best of our knowledge, the value of P-O data for studying species composition 

determinants at large spatial scales was seldom evaluated before (but see Kadmon and Heller 1998, 

Yom-Tov and Kadmon 1998, Kadmon and Danin 1999). 

In this study I attempt to determine whether, when considering a multitude of species over a large 

spatial extent, data type (P-A vs. P-O) has a significant effect on the results of analyses of species-

environment relationships. A direct comparison of the effect of data type on the results of such 

analyses requires complete datasets of the two types, containing data on the same species and with the 

same spatial extent. Therefore, available data of actual observations is not optimal for such analyses, 

and a simulation study seems to be the most appropriate solution. P-A and P-O datasets of virtual 

species within the contiguous USA were simulated and the effect of data type on the results of 

multivariate analyses of the environmental determinants of species composition was examined. In 

order to keep the simulations as close to reality as possible, real environmental data were used to 

define species niches, As well as real locations of observations to create a P-O sampling scheme, 

incorporating real biases into our datasets. The null hypothesis of this chapter was that the sampling 
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technique (i.e. P-A or P-O) will not affect the results of multivariate analyses of multiple species 

datasets covering a large spatial extent. 

METHODS  

Distribution maps for 50 virtual species within the land area of the contiguous USA were produced. 

Species distributions were based on niches reflecting actual environmental conditions in the study 

area. The realized ecological niche of each virtual species was defined by selecting a random 

location within the study area to represent the niche center in parametric space and recording the 

values of six environmental parameters in this location: max. temperature of the hottest month 

(MaxT); min. temperature of the coldest month (MinT); annual precipitation (Prec); altitude (alt); 

normalized difference vegetation index (NDVI); and distance to nearest urban area (dtu). Climatic 

and topographic parameters were taken from Worldclim (Hijmans et al. 2005). An NDVI layer was 

downloaded from MODIS (http://glcf.umiacs.umd.edu/data/ndvi) and produced a layer of distance 

to nearest urban area from a map of the urban areas of the USA (data was extracted from ESRI data 

files (ESRI 1999)). The correlation level between each pair of variables at 200 random locations 

within the study area were tested. The average correlation level was 0.36, and the maximum 

correlation was 0.84. The marginal effect of each parameter on species composition, as analyzed by 

Canonical Correspondence Analysis (CCA) is the effect each variable has regardless of other 

variables, thus, these correlations are evident in the analyses, but do not affect the results (Ter Braak 

1986). All environmental layers were rescaled to a resolution of 0.0833
0
 (~10km). Niche breadth 

was set as a random fraction (between 0.05 and 0.5) of the true range of each parameter in the study 

area, above and below the niche center. Simulations were carried out in MatLab (MathWorks, 

Natick, Massachusetts, USA). Distribution maps were produced for each virtual species in ArcGIS 

(ESRI 1999) by superimposing a grid with mesh size of 0.0833
0
 (~10km) over the entire study area. 
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Grid cells were assigned a value of 1 where all environmental parameters were within the specified 

realized niche, and zero otherwise (Fig. 1).  

Presence-absence and presence-only datasets 

To produce a P-A dataset 1,072 locations from the geographic space of the entire study area were 

selected (1,072 is the median number of sampling locations found in 17 studies that used presence-

absence data). For each location the presence and absence of all virtual species was recorded, 

producing a matrix of 50 columns and 1,072 rows. The values of eight environmental parameters 

(the same six parameters used for defining niches, plus temperature seasonality (standard 

deviation*100; TempS) and precipitation seasonality (coefficient of variance; PrecS)) were recorded 

in the same 1,072 grid cells, resulting in an environmental data matrix of eight columns by 1,072 

rows. The two additional parameters were expected to show a weaker relationship with species 

composition than the parameters used to define the niches. Since they are correlated to parameters 

defining the species' niches, some relation between them and the distribution of the species was 

ecpected. 

P-O data typically contain spatial bias towards easily accessible locations, as well as areas with high 

biodiversity (Hijmans et al. 2000). In order to incorporate such bias into our datasets, the locations 

of real observations of a random selection of avian species in the contiguous USA were used, using 

GBIF (GBIF 2008). A compilation of ~200,000 observation locations was derived from real 

observations in the GBIF dataset, hereafter the observation pool. The distribution range of virtual 

species j contained a subset of Nj records from the observation pool. In order to mimic taxonomic 

bias, as it exists in observations of real species, 50 avian species we selected randomly, and the 

number of observations existing for them in GBIF was recorded. Each virtual species was randomly 

assigned a number of observations of one of the 50 avian species (nj). For each species j, nj 

observation locations wrre randomly selected, out of the Nj observations located within its 
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occurrence range. That resulted in a matrix of 50 columns, denoting the 50 virtual species and, 

initially, 120,670 rows (the number of grid cells in the entire study area). Next, all empty cells were 

deleted from the matrix (cells with no species present). Mean size of the full P-O sets was 24,696 

observations. Since there was an order of magnitude difference between P-A and P-O dataset sizes, 

partial sets of P-O data were also produced, consisting of a random choice of 1,072 rows from the 

P-O matrix, resulting in P-O datasets of the same size as the P-A datasets. Sets of each data type (P-

A, P-O and partial P-O) were produced five times, independently.  

 
Figure 1.1: Distribution maps of two of the virtual species. One with a wide niche (top panel); and 

one with a narrow niche (bottom panel). 
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Data type effect 

Canonical correspondence analysis (CCA) was used to examine whether data type affects the results 

of analyses of the relationships between species composition and environmental parameters (Ter 

Braak and Verdonschot 1995) using CANOCO 4.5 (Ter Braak and Smilauer 2002). CCA is an 

ordination technique that performs gradient analyses, constrained by species composition, iteratively 

(Ter Braak 1986, Legendre and Legendre 1998). Ordination is the simplification of a multi-

dimensional space by reducing the number of axes in this space (Legendre and Legendre 1998). The 

reduction is achieved by extracting the major gradients from the explanatory variables, which explain 

the largest amount of the variance in the independent variable distribution, and creating axes that 

represent these gradients. CCA assumes that the relationships between environmental parameters and 

species composition are unimodal, rather than linear as do Principal Component Analysis and 

General Linear Models (Ter Braak 1986, Legendre and Legendre 1998).  

CCA analyses were applied on the three dataset types, and compared the contribution of the various 

environmental parameters as explanatory variables determining species composition. Each CCA 

analysis resulted in a λ value for each parameter. λ)x( is the proportional contribution of variable x to 

the eigenvalue of the first axis. Another element of the ordination is the relationships between the 

various parameters, i.e. the level of correlation and the directionality of their effect on species 

composition (Ter Braak 1986, Ter Braak and Verdonschot 1995). The ordination diagrams were 

examined in order to qualitatively explore the relationships among the different parameters and 

between them and the virtual species, within the ordination space. 

Although CCA analyses are not normally repeated, and do not require replications, I repeated the 

analyses five times, to ensure the consistency of our results. Thus, univariate analysis of variance was 

carried out in SPSS using the different parameters as covariates and the different data types as fixed 
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factors, to determine whether the differences in the amount of variance explained by the 

environmental parameterλ( s values( obtained from P-A and P-O data, both full and partial.  

Bias analysis 

Analyses on the observation pool dataset and its respective environmental dataset were carried out in 

order to quantify the amount of bias in the data. Environmental bias was calculated as the difference 

between values of each environmental parameter in the entire study area (contiguous USA) derived 

from (1) all grid cells in the study area and (2) all the locations of the actual observations in the 

observation pool (~200,000). From the environmental bias, spatial bias (difference in distance to 

nearest urban area, as described above) was extracted.  

RESULTS 

Environmental determinants of species composition 

Ordination diagrams produced for each data type revealed that environmental parameters had similar 

effect on species composition, in all datasets regardless of data type (Fig. 1.2). For example, distance 

to nearest urban area and altitude were highly correlated in their effect on species composition. The 

effect of data type  on theamount of variance explained by each varia ble)λ va(lue was examined. I 

expected that the effect of distance to nearest urban area (dtu) would be less prominent when using P-

O data, since the range of values of this parameter was smaller in P-O data than in randomly selected 

locations (P-A). In contrast, the results showed that there was no significant difference between the 

amount of variance explained by this factor in the two data types (Kruskal-Wallis ANOVA, χ2
 = 

4.455, p = 0.108). Univariate ANOVA, with environmental parameters as covariates and data type as 

a fixed factor (F=2.553, p=0.082, Fig. 1.3) showed there was no significant effect of data type on the 

results of the CCA.  
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Figure 1.2: Three of the ordination diagrams. In the upper left corner is an ordination diagram of one CCA 

repetition applied to Presence-absence (P-A) data for 50 virtual species in 1072 sites. In the upper right corner 

is an ordination of one CCA repetition of Presence-only (P-O) data for 50 virtual species in ~25,000 sites. In 

the bottom left diagram is an ordination of partial P-O data (a subset of 1072 sites out of ~25,000 P-O data). 

Relationships between the various parameters (arrows) are similar in all diagrams, as well as the strength of 

their effects on species composition. Partial P-O is rotated around the origin of the axes, yet the relationships 

between the parameters and the species, as well as among the different parameters are similar to those in the P-

A and P-O diagrams.  
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Figure 1.3: CCA λ values of the different environmental parameterBa .srs ar eaverage values over fiv e

repetitions. Error bars are standard deviations. Univariate ANOVA showed no significant effect of data type on 

λ values w henthe different parameters were used as covariates and data type as a fixed factor (SPSS).  

Bias analysis 

Mean values of minimum temperature in the coldest month, distance to nearest urban area and 

altitude were lower in the locations of the observation pool than in the entire study area. In contrast, 

mean values of NDVI and annual precipitation were higher in these locations (Fig. 1.4). Ranges of all 

parameters were similar between the sampled area and the entire study area.  
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Figure 1.4: Difference, in percent, between the average values of the different environmental parameters in 

locations with observations and the entire study area (contiguous USA). Positive values denote higher sample 

values and negative values denote higher study area values. 

DISCUSSION 

Results support the research hypothesis and show quantitatively, for the first time, that P-O data can 

be used to characterize the relationships between environmental variables and species composition 

over large spatial extents. I found, by using virtual species for which complete distributional 

information is available, that CCA is robust enough to identify the main environmental drivers of 

species composition despite the bias contained in such data. 

Results of the CCA analyses were highly consistent, showing similar effect of the various 

environmental parameters on species composition, regardless of data type. This consistency implies 

that the method is not sensitive to data type, and that the bias in the GBIF data does not significantly 

affect the outcome of analyses, at least at large geographical extents.  

As expected, the results only partially explained the variance in the data, due to the non-unimodal 

relationships of the simulated species with environmental variables. However, it has been suggested 

that such simple representations of species should be used to test the robustness of ordination 
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techniques, such as CCA (Minchin 1987). The results suggest that CCA is robust enough to give 

consistent results despite the violation of the unimodal relationship assumption. partial P-O data 

were used in order to account for the difference in sample size between P-A and P-O (an order of 

magnitude). One might expect that the larger amount of data in the P-O set might compensate for its 

assumed relatively poor quality. Yet, partial P-O analyses results were very similar to those of P-O, 

suggesting that the amount of data had little effect on the results. All three datasets revealed similar 

relationships between environmental parameters and species composition.  

Given the disagreement among authors regarding the value of P-O data for species distribution 

modeling, and the conclusions of Ferrier and Guisan (2006) that P-O data are insufficient for 

community-level modeling, the results presented here may seem surprising. One plausible 

explanation for my results is related to the amount of information within a dataset. Analyses of 

species-environment relationship require dividing the studied area into grid cells. Since typically 

most grid cells in a given study area are empty in P-O datasets (Ferrier and Guisan 2006), the 

amount of information in the occupied cells is crucial for the success of the analysis. When 

analyzing data from multiple species, each grid cell may contain data on more than one species. The 

cells may thus contain more information than in a single-species analysis. In addition, the number of 

occupied cells is dependent on the number of species, due to the larger amount of observations, as 

well as on the spatial distribution of the observations in the dataset. Thus, using multiple species 

increases the amount of data available for the interpretation of the species-environment 

relationships. This may explain the doubts regarding P-O data for individual species modeling, as 

well as my success in using P-O data for community level analyses. Fifty virtual species were used, 

which is a relatively small number of species, compared to actual species numbers found in such 

large areas, e.g. there are >400 mammal species (Kays and Wilson 2002) and >900 bird species 

(http://www.birdlist.org/usa.htm) in the contiguous USA. Thus, analyses based on real species may 
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be even more robust and reflect the true species-environment relationships. The effect of multiple 

species on the consistency of the results of the analyses is apparent in my results. There are 

differences in the locations of specific species in relation to the different environmental variables in 

the ordination space of the various data-types, suggesting that single species analyses may be more 

sensitive to data-type than multi-species analyses. 

Kadmon et al. (2004) incorporated roadside bias correction when modeling species distribution with 

bioclimatic models. They concluded that such corrections should be incorporated only posteriori to 

an examination of the amount of environmental variability between near-road locations and off-road 

locations. They also suggested that in an area of small climatic variance between the road network 

and the entire area, roadside survey data are appropriate without correction. In a simulation study, 

Reese et al. (2005) found that using data that contain roadside bias may produce model results that 

do not differ much from models based on systematic surveys.  

The analysis revealed that the observations in the GBIF database indeed included environmental and 

geographical biases. Observations were biased towards areas of high primary productivity, higher 

annual precipitation, higher minimum temperatures and lower altitudes. Seasonality had a small 

effect on observation frequency, probably due to the relatively low temporal resolution of the data. 

All the differences indicate that observers tended to look for species in productive areas, where 

conditions are relatively convenient, and avoid extreme environments. Geographical bias was 

represented by the average distance from the nearest urban area, under the assumption that 

observations will be concentrated closer to urban areas than would be expected by chance. The 

analysis indicated that the average distance of observations to an urban area was indeed ~30% 

smaller than the average distance in the study area, suggesting a strong bias towards sampling 'close 

to home'. In spite of these biases, the results were robust and consistent and the findings thus 
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confirm that easily accessible, web-based data are indeed amenable for the study of large-scale 

species composition determinants.  

Chapter 2 - Relationships between mammal species composition and environmental parameters 

at varying spatial scales in the contiguous USA  

Introduction 

Understanding the factors affecting the distribution of biodiversity in time and space is a central 

objective of ecology (Shmida and Wilson 1985). Relationships between environmental parameters 

(e.g., climate, topography) and biodiversity patterns are scale-dependent both spatially and temporally 

(Levin 2000). Species richness, probably the most studied aspect of biodiversity, was often shown to 

vary as a function of spatial scale (Rahbek and Graves 2001, Whittaker et al. 2001, Noguיs-Bravo et 

al. 2008). 

Theories concerning the mechanisms governing distribution patterns of biodiversity elements, range 

from global (latitudinal species richness gradient) to very local scales, and relate to various processes, 

such as environmental, historical and evolutionary (Rosenzweig 1995). MacArthur (1972) presented 

ten alternative explanations for such patterns, related to historical events, inter-specific interactions 

and climatic conditions. He offered a general theory to explain patterns of species richness, i.e. the 

principal of equal opportunity. However, the mechanistic explanation of species richness patterns 

does not explain variation in species composition. Patrick (1963) found similar numbers of diatom 

species in different streams, while species identity differed considerably. Whittaker (1956) reported 

that most of the variation in tree species composition in the Great Smoky Mountains could be 

explained by two environmental gradients i.e. elevation and water balance. Recently it has been 

suggested that species richness patterns are largely determined by historical biogeographical 

processes (Pyron and Burbrink 2009). Theories on species composition patterns include a neutral 

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



  

 26 

model suggesting all differences are caused by random differences in dispersal between 

demographically and competitively equal species (Borcard et al. 1992, Hubbell 1997), an 

environmental model, relating species distributions to environmental conditions (Legendre et al. 

2005), and a model suggesting that species composition is determined by interspecific interactions 

within and between trophic levels (May 1984). These models are non-mutually exclusive. From a 

historical perspective, in 1916 Clemetns (Clements 1916) suggested that communities (i.e. species 

assemblages) are discrete, and there are stable associations between species, supporting the inter-

specific interactions theory. On the other hand, Gleason (1939) asserted that individual species react 

to their physical environment, thus there is gradual change in species composition along 

environmental gradient. Species composition was only seldom studied at multiple spatial scales, but 

see for example Grand and Cushman (2003) and Grand and Mello (2004). In these studies, scale was 

defined qualitatively, i.e. plot, patch and landscape scale. However, most of the studies on species 

composition were restricted to a single scale (Svenning and Skov 2005, Rodriguez et al. 2006, Jones 

et al. 2008). Applied across multiple scales, multivariate analyses may provide a wider picture of the 

relationships between environmental parameters and species composition (Ter Braak 1986, Cushman 

and McGarigal 2002). Understanding species composition – environment relationships, and 

specifically how they are affected by spatial scale, improves conservationists' ability to predict the 

spatial distribution of biodiversity entities, and their reaction to global and regional changes 

(Margules and Pressey 2000).  

There are serious conceptual and practical impediments to such analyses. A central conceptual 

challenge is the nature of scale, whose behavior is not intuitive (Allen and Hoekstra 1992). Scale is 

characterized by both grain (grid cell size) and extent (Willig et al. 2003). In most studies, a change 

of only a single element of scale is regarded as a full change of scale (Wiens 1989). Here a 'complete' 

approach was used, in which both grain and extent are modified together in the process of upscaling. 
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Four scales were used, with grains ranging between 100 and 10,000 km
2
, and extents between 90,000 

and ~10,000,000 km
2
. The lower limit of spatial scale was the amount of data in GBIF. At smaller 

scales the amount of occurrence data on mammals is insufficient for ordination analyses. At each 

spatial scale a number of spatial units were sampled and analyzed independently (Table 2.1 and Fig. 

2.1).  

Table 2.1: A list of the different sampling units used in the analyses including: Grain size and extent (in km
2
), 

location, number of occurrence records and number of species. 

Unit  Grain size     Extent  Location No. of occurrences No. of species 

1    100   9*10
4
  West (North)  2,510   56 

2    100  9*10
4
  West (South)  870   51 

3    100  9*10
4
  East (North)  1351   37   

4    100  9*10
4
  East (South)  291   27 

1    1,000 9*10
5
  West

 
  17,538   125 

2    1,000 9*10
5
  East   7,030   71 

1    4,000 3.6*10
6
 West   64,845   199 

2    4,000 3.6*10
6
 East   83,415   128                  1

    10,000 ~10*10
6
 --   308,417  284 

 

 
Figure 2.1: A map of the study area (the contiguous USA). Colored squares represent the sampling units. 

Orange sampling units have a grain of 100 km
2
 and extent of 90,000 km

2
; red units have a grain size of 1000 

km
2
 and extent of 900,000 km

2
; blue units have a grain size of 4000 km

2
 and extent of 3,600,000 km

2
. Grain 

size of the grey grid extending the entire study area (~10,000,000 km
2
) is 10,000 km

2
.  
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The major practical impediment for such analyses is data availability (Ferrier and Guisan 2006). 

Presence-absence data are only available for relatively small extents (Ferrier and Guisan 2006). 

Presence-only (occurrence) data have become available in the last decade at large quantities and for 

diverse taxonomic groups, via the internet (Graham et al. 2004). However, presence-only data are 

often considered improper for such analyses due to a range of inherent biases (Kadmon et al. 2004, 

Loiselle et al. 2008). The validity of using presence-only data in ecological analyses was studied 

several times in the context of modeling the distribution of a single species or modeling species 

richness patterns, but with inconclusive results (Elith et al. 2006). Chapter 1 evaluated the reliability 

of using presence-only data for studying multiscale diversity patterns based on the composition of 

taxonomic or functional groups. The assessment confirmed that presence-only data are sufficient for 

analyzing the relationships between species composition and environmental determinants. The 

objective of this chapter is to quantify the variation in the relationships between mammal species 

composition and its environmental determinants, at varying spatial scales.  

Research hypotheses 

At the base of the analyses performed in this chapter stand a series of hypotheses: 

1. Climatic variables will explain the largest amount of variance in species composition, and their 

explanatory powers will increase with increasing spatial scale. 

2. Within the climatic variables group, precipitation will account for the largest proportion of the 

explained variance. 

3. Topography will have a negative correlation with scale, explaining more of the variance at the 

smaller scales of the analysis. 

4. LULC variables will explain a substantial amount of variance at every spatial scale analyzed. 
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Methods 

Data consisted of all occurrence records of terrestrial mammals (excluding bats) in the contiguous 

USA that existed in the GBIF portal (GBIF 2008). In addition to mammal occurrence data, 

Environmental data were compiled, including 15 parameters belonging to four groups (Table 2.2), 

which are believed to have an effect on species composition: climate; topography; land-use/land-

cover (LULC) and primary productivity. The spatial resolution of all environmental layers was (or 

was reduced to) 0.0833
0
 (~10km). Canonical Correspondence Analysis were applied to each of the 

sampling units and isolated the cumulative effect of each group of parameters with variation 

partitioning techniques (Cushman and McGarigal 2002, Legendre et al. 2005). Each parameter and 

each group was analyzed alone (marginal effect). In addition, groups were also analyzed with the 

other groups as co-variables (pure effect).  

Results and Discussion 

Climate had the largest effect on species composition at every spatial scale, and its effect increased 

with scale (Fig. 2.2). This is consistent with theoretical predictions that at fine scales, physical 

determinants' effects are obscured by biological interactions and that the effect of climate becomes 

more evident at larger scales (Wiens 1989 and references therein). LULC parameters decreased in 

their effect with increasing scale, while the effect of topography and NDVI remained relatively 

constant, and weak regardless of scale (Fig. 2.2). Analyzing the marginal effect of each parameter 

group resulted in higher values of explained variance, since it included the overlap in explained 

variance between parameter groups. 

However, responses of the different groups to scale were similar, thus only the pure effects are 

presented hereafter. Differences in the amount of explained variance between sampling units within 

each scale were small relative to the difference between scales (Fig. 2.2). Such small inter-unit 

differences indicate that scale plays a major role in species-environment relationships, and that over 
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large geographic extents, it is more pronounced than regional or local differences in environmental 

conditions. 

 

Figure 2.2: The amount of explained variance in the composition of mammal species in the contiguous USA, 

as resulted from CCA analyses, at varying spatial scales. Scale consists of grain size (upper number on the x-

axis) and extent (lower number on the x-axis). 

 

However, climate, topography and primary productivity at the third scale (4,000 and 3.6*10
6
 km

2
 

respectively), were higher in the western unit than the eastern unit (Fig 2.3), suggesting that there are 

significant differences between the Eastern and Western USA in major environmental gradients. 

Wiens (1989) described a phenomenon called scale-domains, based on a review of studies that used 

different sized quadrates to study patterns of plant distributions. He suggested that change in pattern 

of ecological phenomena with scale is monotonous within each scale-domain. However, between 

domains pattern variability becomes chaotic and unpredictable, manifested as high variability 
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between sampling units. It is important to note that the effect of scale on the relationships between 

species and their environment is not directly by geographic extent, but rather by altering the length of 

the gradients which determine species distributions and composition.   

Table 2.:2 Environmental parameters used in the analyses. * denotes binary )”dummy“( variables. 

Parameter group Parameter name Description 

Climate 

Temperature Mean annual temperature 

Temp_seasonality Temperature standard deviation *100 

Precipitation Mean annual precipitation 

Prec_seasonality Coefficient of variation of precipitation 

Topography 
Altitude Height above sea level 

Alt_range Range of altitudes within grid-cell 

Primary productivity NDVI Normalized difference vegetation index 

Land-use Land-cover 

Pop-density Population density  

Urban* An urban area 

Forestry* Covered with forest 

Open-herbaceous* Covered with herbaceous vegetation 

Agriculture* Agricultural area 

Distance to urban Distance to the nearest urban area 

Wetland* Wetland area 

Water* Covered with water 

 

Breaking down the various parameter groups into individual parameters, I calculated the marginal 

effect of each parameter (Fig. 2.4). The general trend of the climate group followed that of mean 

annual temperature, and temperature seasonality (Fig. 2.4a), indicating that the dominant climatic 

feature is temperature, rather than precipitation, which explained a relatively small amount of data at 

the smallest scale, and an almost constant larger amount at the other scales. Precipitation seasonality 

had a small effect at every scale except the third. Pianka (1966) presented a theory of climatic 

stability, as a driving force of species diversity. The amount of variance explained by seasonality 
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measures in this study does not support that theory, since in most cases seasonality explained less 

variance than the mean value of both climatic features (Figure 2.4a). 

 

Figure 2.3: Amount of explained variance at a spatial scale of grain size and extent of 4,000 and 3.6*10
6
 km

2
 

respectively, by sampling unit. Grey bars are the values of the western unit; open bars are the values from the 

eastern unit. 

In the topography group, altitude showed a constant increase in its effect, with increasing scale, while 

altitude range had a relatively small effect at all but the largest scale (Fig. 2.4b). At the largest scale, 

altitude range explained more variance than altitude itself. Such a switch in the importance of the 

topographic features may be of importance when selecting environmental parameters for modeling or 

reserve network planning. Among the theories of species diversity drivers presented by Pianka (1966) 

topographic relief, i.e. topographic variability, is suggested as a factor that increases species diversity. 

This study indicates that this theory might be valid at the largest scale. However, at smaller scales, at 

which topography plays an important role in determining species composition, altitude is more 

important than its range. All land-cover parameters in the LULC group were grouped together (Table 

2.2). These parameters demonstrated a constant moderate decrease in their effect at the three smaller 

scales (Fig. 2.4c). At the largest scale, the amount of variance explained by all the grouped variables 

0

10

20

30

40

50

60

Climate Topography NDVI LULC

E
x

p
la

in
e

d
 v

a
ri

a
n

c
e

 (
%

)

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



  

 33 

dropped to ~3%. This is probably a result of the fact that at very large grain size, each grid-cell 

contains a mosaic of LULC patches, and the variability within the cells is equal to or larger than the 

variation between cells. Effect of population density decreased consistently with increasing scale, and 

distance to urban area followed a similar trend, except at the 100 km scale, where it explained a 

relatively large amount of the variance in species composition (Fig. 2.4c), suggesting that at the 

continental scale, the most important human factor is human presence, and not any specific human 

activity or behavior.  

Analyses revealed that species composition is affected largely by climate at grain size between 10
2
 to 

10
7
 km

2
 and extent between 9*10

5 
to 10

8
 km

2
 respectively. Topography was not a prominent factor in 

my analyses. It is probably more important at smaller scales (Pianka 1966). LULC parameters had 

sizeable influence on species composition at the two smaller scales, probably via habitat degradation 

and fragmentation, and ultimately, habitat loss (Wilson et al. 2004). 

These results supply a quantitative indication that human induced global changes have an imminent 

impact on species compositwhe ,ionther directly or indirectly, and relate  tothe need for "…improve d

understanding of the response of biodiversity to changes in climatic factors and other pressures" as 

stated in a report by the Intergovernmental Panel on Climate Change (Gitay et al. 2002). 
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Figure 2.4: Amount of the variance in species composition explained by individual parameters: a) climatic 

parameters; b) topographic parameters and c) LULC parameters. Land cover is the combined effect of six land 

cover categories (agriculture, forestry, open herbaceous, urban, water and wetland). Prec_sea and Temp_sea 

stand for precipitation seasonality and temperature seasonality respectively; Dist_to_urb stands for distance to 

nearest urban area; and Pop density stands for population density. 

 

As ecologists strive to find a general model explaining species diversity, the results presented here 

should be compared to other taxonomic groups and in other regions of the world. Nevertheless, this 

study, to the best of my knowledge, is the first to analyze the relationships between species 

composition and the environmental conditions that mold them at large and multiple spatial scales, 

contributing to the understanding of global patterns of biodiversity.  
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Chapter 3 - Comparison of classification methods for producing surrogates for biodiversity 

INTRODUCTION 

Conservation of biodiversity requires extensive knowledge of the distribution of a myriad of species. 

Such knowledge is scarce, and collecting all necessary data is often prohibitively costly. One 

widespread solution is to use surrogates for biodiversity (e.g. Belbin 1993, Faith and Walker 1996, 

Ferrier and Watson 1997, Kati et al. 2004a, Fleishman et al. 2005, Sarkar et al. 2006). The main 

assumption of the surrogacy approach is that the distributions of target species (species which are the 

target of conservation plans) is in spatial congruence with other, easily measured or collected, 

features. There are two types of biodiversity surrogates. In biological surrogates, the distribution of a 

taxonomic group is used to predict distribution patterns of other groups (Dobson et al. 1997, 

Virolainen et al. 2000, Reyers et al. 2001, Garson et al. 2002b, Kati et al. 2004b). Groups of species 

used as surrogates in the literature are numerous (Carmel and Stoller-Cavari 2006, Rodriguez et al. 

2006). Dobson et al. (1997) found that conserving endangered plant species in the United States 

resulted in a representation of a large proportion of endangered species from all other taxa they 

examined, but that the presence of endangered birds and herptiles were more indicative of overall 

endangered biodiversity in the area. Kati et al, (2004b) examined the value of six taxonomic groups 

as biodiversity surrogates at a local scale, by comparing the spatial congruence of species richness 

patterns of each group to the other groups. They concluded that woody plant richness patterns were 

the best indicator of overall biodiversity patterns in their study area. The scale at which Kati et al. 

(2004) worked is specifically suitable for conservation (a natural reserve 430 km
2
 in size) making 

their study highly important for conservation applications. Other groups tested as surrogates include 

mammals, mollusks, arthropod, beetles and butterflies etc. (Kerr et al. 2000, Rodriguez et al. 2006). 

Environmental surrogates are classifications of an area into land parcels with similar physical 

characteristics (Ferrier and Watson 1997, Reyers et al. 2001, Leathwick et al. 2003, Oliver et al. 
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2004, Bonn and Gaston 2005, Trakhtenbrot and Kadmon 2005, Rodrigues and Brooks 2007, Arponen 

et al. 2008). An ongoing debate concerns the effectiveness of surrogates in predicting species 

assemblages (Faith and Walker 1996, Rodrigues and Brooks 2007). Ferrier and Watson (1997) 

proposed two ways to quantitatively assess the effectiveness of surrogates: (1) based on the number 

of species represented by a set of sites selected for conservation using different surrogates, and (2) on 

the level of correlation between the spatial structure of a surrogate and of the taxonomic group of 

interest. Rodrigues and Brooks (2007) reviewed a large number of studies of surrogate efficiency. 

They found that in 59% of the studies reviewed, surrogacy was found positive, i.e. performed better 

than random selection of conservation areas in representing target species. They conclude that this 

indicates a weak yet positive value of surrogacy. They also found that cross-taxon surrogacy is 

stronger in fresh water environments than in the terrestrial and marine realms. They also concluded 

that taxonomically closer groups constitute more efficient surrogates than taxonomically very 

distance groups. They found that about half the studies on environmental surrogates had positive 

results, leading to the conclusion that in general, biological surrogates are more efficient in 

representing biodiversity than environmental surrogates. Carmel and Stoller-Cavari (2006) compared 

environmental and biological surrogates on Mt. Carmel, Israel. They concluded that environmental 

surrogates performed similarly well as did biological surrogates, and that woody plants were the most 

efficient biological surrogate, similar to Kati et al. (2004b) 

A common approach for producing surrogates for biodiversity is classification of an area into 

domains of similar characteristics, using cluster analysis (Faith and Walker 1996, Trakhtenbrot and 

Kadmon 2005). Clustering can be conducted with various partitioning or agglomerating methods 

(Everitt 1993, Legendre and Legendre 1998), based on similarity or dissimilarity measures. Several 

arbitrary decisions are made during this process, regarding the similarity measures, number of classes 
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and the specific clustering algorithm to be used (Everitt 1993). These decisions may largely affect the 

resulting surrogate map. 

Here, five clustering methods commonly used in conservation planning were evaluated, representing 

three different approaches to clustering, average based methods (AVERAGE, CENTROID and 

Ward's minimum variance), object based methods (i.e. furthest neighbor) and non-hierarchical 

classification (k-means). This study attempts to take steps towards understanding surrogacy in two 

directions. First, a quantitative evaluation of the efficiency of different clustering methods for 

surrogate production was carried out. Both biological and environmental surrogates were assessed, by 

applying different algorithms to the same dataset. The second element of this study adds a new aspect 

to the evaluation of surrogate performance, measuring the evenness of surrogate classes, in addition 

to their species representativeness. Surrogates are tools for planning reserve networks; classes 

covering very small areas are more difficult to incorporate into such networks. Surrogates with low 

evenness values are characterized by few dominant classes, and other classes occupying a negligible 

area (see for example fig. 3.1). In surrogates with a high evenness value, each class occupies a 

substantial part of the area. Such surrogate maps allow managers more flexibility in choosing areas 

for conservation and thus, more considerations may be taken into account, such as development, 

connectivity and land costs (Figure 3.1). Simpson's diversity index was used as a measure of 

evenness. 

In this section there were competing hypotheses regarding the efficiency of the different classification 

methods. The null hypothesis was that there the various classification methods will perform equally 

in both efficiency measures. Based on previous studies, the H1 hypothesis was that the Centroid 

method will be the most efficient method for producing surrogaH .tesh 2ypothesis was that Wa’rd s

method will be the most efficient method for producing surrogates.  
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METHODS 

Five different clustering algorithms were used to produce environmental and biological surrogate 

maps of the same area in Mt. Carmel, using three independent datasets: environmental variables; 

geophytes distribution; and woody species distribution. The surrogates' efficiency in representing 

species was evaluated, and in addition the evenness of the maps that were produced was calculated, 

so as to evaluate the level of flexibility given to reserve network planners by each method.  

In addition, in order to examine the generality and robustness of our results, data from Trakhtenbrot 

and Kadmon (2006) was used to evaluate the performance of environmental surrogates produced 

using different clustering algorithms for the entire state of Israel. 

Study area 

Mt. Carmel in northern Israel has an area of ca~ 280km
2
 and mean elevation of 220m (Fig. 3.2). The 

climate is eastern Mediterranean, with mean annual rainfall of 650mm*year
-1

 and temperature 

averages ranging between 11
o
C in January and 24

o
C in August. The most common soil types are Tera 

Rossa and Rendzina. Vegetation is comprised of eastern Mediterranean scrubland consisting of 

structurally rich and diverse vegetation communities (Naveh and Dan 1973a, Le Honerou 1981, 

Naveh and Kutiel 1986). These landscapes, commonly referred to as vegetation mosaics, are highly 

heterogeneous at a broad range of spatial scales, ranging between grain size as small as a few meters 

to landscape level scales (Naveh 1975, Shoshany 2000, Bar Massada et al. 2008). The fine-grained 

mosaic is characterized by woody patches, herbaceous clearings, exposed rock and bare ground 

(Perevolotsky 2002). A grid of 500*500 m was superimposed on the area, dividing it into 1145 cells. 

All analyses were carried out at this spatial scale.  
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Figure 3.1: Biological surrogates with eight classes, based on woody species distribution, produced with five 

different clustering algorithms. D is Simpson's diversity index. 
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Figure 3.2: A map of the study area in northern Israel.  
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Species distribution data 

Presence-absence data for geophytes and woody plants were collected in 100 sampling sites 

distributed randomly in the entire study area, from October 2002 through May 2003 (see Carmel and 

Stoller-Cavari 2006 for a complete description of fieldwork). Field data on each species, along with 

environmental parameters (Table 3.1), were used to create a habitat suitability map for each species. 

Habitat suitability maps were produced with logistic regression models (Guisan and Zimmermann 

2000) which were applied to the study area in the geographic information system (GIS).  

Habitat suitability maps consisting of probabilities of occurrence, were transformed into binary (0/1) 

maps, with a threshold of 0.5. Statistically significant models were produced for 23 geophyte species 

and 37 woody species (Appendix 1). These sixty distribution maps were used in further analyses. 

Table 3.1: Environmental parameters used for logistic regression models and environmental surrogates for 

biodiversity 

Parameter Description 

NDVI Normalized difference vegetation index – a measure of 

primary productivity 

DTR Distance to nearest road 

Terra Rossa Presence/absence of Terra Rossa soil in grid cell 

Rendzina Presence/absence of Rendzina soil in grid cell 

Veg cover Presence/absence of woody vegetation cover in grid cell 

Rain Average annual precipitation 

mdt1 Mean daily temperature in the coldest month (January) 

mdt8 Mean daily temperature in the hottest month (August) 

Aspect 

Derived from digital elevation model 
Slope 

Elevation 

 

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



  

 42 

Environmental data 

Environmental parameters used in this study included measures of climate, soils, vegetation, 

topography and an anthropogenic disturbance index (Table 3.1). All topographic parameters were 

calculated from a digital elevation model of the study area. Parameters were chosen to represent 

independent influences, i.e., climate has a different effect than topography, primary productivity 

affects species composition differently than distance to road or soil type etc. A total of 11 parameters 

were used, both for the logistic regression models (that produced species distribution maps), and for 

the environmental surrogates. All parameters were extracted from GIS layers and averaged over 500 

m cells in order to fit the grid.   

Surrogate production 

Both types of surrogates, biological and environmental, were produced using five clustering 

algorithms: Average, Centroid and Ward's, complete linkage, and k-means. The first three methods 

are based on a calculation of some sort of average distance between groups of objects. In the Average 

method, the fusion of two object-groups is determined by calculating the distance between each pair 

of groups, as the average distance between each pair of objects within these groups. The two closest 

groups are fused together at each step, until there is only one group, containing all objects. In the 

Centroid method, the distance between group-pairs is determined by calculating the Centroid of each 

group, as an arithmetic average of the values of each of the environmental parameters. Ward's method 

is related to the Centroid method. It consists of calculating an error sum of squares (ESS), which 

consists of the average distance of each object in the group to the group centroid. The fusion of two 

objects is determined by finding the pair whose fusion contributes the least to the ESS (Everitt 1993, 

Legendre and Legendre 1998). The Complete linkage method is object-based, i.e., the fusion of two 

objects is determined by finding the two groups in which the distance between the two furthers 

objects is the smallest (Everitt 1993, Legendre and Legendre 1998). The four methods discussed 
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above are hierarchical agglomerative methods. The final clustering algorithm I used, k-means, is a 

non-hierarchical partitioning method. Similar to Ward's method, K-means partitioning is a least-

squares method. However, it is a nonhierarchical classification method. It allows the user to divide a 

collection of objects into K groups (K is user-determined). Each parameter is represented as an axis in 

an n-dimensional space. The Euclidean distance between objects in this space is calculated, and then 

used to classify them into classes (Legendre and Legendre 1998).   

Each clustering method was conducted using three classification schemes, with three, eight and 

twelve domains respectively. The two taxonomic groups (geophytes and woody plants) were used 

alternately, as surrogates for each other. In total, 45 different surrogates were examined. 

Biological surrogates   

Two similarity matrices were calculated, for woody and geophyte species using Jaccard's similarity 

coefficient. The similarity matrices were then used to classify the 1145 cells into domains. Three 

surrogate types were constructed: environmental surrogates, biological surrogates based on woody 

species distributions and biological surrogates based on geophyte species distributions. Each of these 

surrogate types was produced with three, eight and twelve domains, yielding nine combinations of 

surrogate type and number of domains. Each such combination was produced using all five different 

clustering methods: Average, centroid, Ward's, complete linkage and k-means. In total 45 surrogate 

maps were produced.  

Environmental surrogates 

Environmental surrogates were produced in the same manner as the biological surrogates, using GIS 

layers of environmental parameters instead of species distributions (Table 3.1). I chose Gower's 

similarity coefficient instead of Jaccard's in order to produce environmental surrogates, since it allows 

incorporation of both continuous and binary parameters, such as presence/absence of a soil type or 
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woody vegetation (Gower 1971, Legendre and Legendre 1998). In addition, when applied to binary 

data, Gower is equal to Jaccard, thus the two indices are compatible and interchangeable (Dunn and 

Everitt 1982). 

Performance evaluation 

Performance of the five different types of clustering was compared in two ways: (a) species 

representativeness - the number of species that are represented when a single site of each domain is 

chosen randomly and (b) Simpson's diversity index, in order to evaluate the evenness of the different 

domains within each surrogate map. 

For species representativeness I recorded the cumulative number of species present in a set of sites, 

when a single site from each domain is chosen at random. Ten thousand random sets of sites were 

selected using a Monte-Carlo permutation procedure, one site from each domain. Environmental 

surrogates were evaluated using both taxonomic groups, while biological surrogates were evaluated 

against each other. 

Simpson's diversity index was calculated for each set of surrogates, to test the diversity of the 

different classes as follows:  

(1) ∑ 









−=

n
i

N

n
D

1

2

1  

 Where ni is the number of cells in class i and N is the total number of cells in the grid. 

To evaluate the different clustering algorithms, The different algorithms were ranked between 1 and 

5, for their performance compared to the other methods for each surrogate. Environmental surrogates 

were ranked according to their performance for each taxonomic group separately, and used the 

average rank for the final ranking. Biological surrogates were ranked according to their performance 

in representing species of the other group. Each surrogate type was ranked separately for each 

efficiency measure, and added them for total relative efficiency. In addition, nine environmental 
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surrogate maps of the entire flora of Israel, produced by Trakhtenbrot and Kadmon (2006) with three 

different algorithms (Average, Centroid and Ward's), and with 3 levels of partitioning (3, 8 and 12 

classes) were evaluated. Trakhtenbrot and Kadmon report that the relative efficiency 

(representativeness) of the different algorithms was constant regardless of the number of classes. 

Average clustering performed best, followed by Centroid, and Ward's method was the least effective. 

Here, Simpson's index was calculated for these nine surrogate maps, and ranked the different maps 

accordingly. 

RESULTS 

Species representativeness 

All types of surrogates, except one based on complete linkage and one based on k-means clustering, 

represented more species than a random choice of the same number of cells from the grid. Figure 3.3 

shows the results of species representativeness for surrogates with eight classes. Surrogates with three 

and 12 classes showed a similar trend. The Centroid clustering method was the most efficient 

algorithm in representing species, representing 94% of the species on average, for the eight class 

scheme. This method was superior to the others in every combination of environmental surrogates, 

and in four of six combinations of biological surrogates. The Average clustering method was ranked 

highest in two combinations, representing an average of ~86% of the species, Ward's method was 

ranked third in species representativeness, representing an average of ~82% of the species for a 

scheme of  eight classes. Complete linkage and k-means were the least effective methods for 

representing 79% and 81% of the species respectively. Both methods represented less species than a 

random choice of sites in one of the 9 surrogate combinations. Total ranks of the different surrogate 

types are summarized in table 3.3. Trakhtenbrot and Kadmon (2006) reported that, when applying a 

weighting scheme similar to the weights in our study, the method that ranked highest in species 
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representativeness of vascular plants in the entire state of Israel was Average, followed by Centroid, 

and that Ward's method was the least effective.  

Table 3.3: Summary of the rankings of all different combinations of number of classes and clustering 

algorithms. Each algorithm was ranked 1-5 according to its relative performance in each number of 

classes, for each of the two performance evaluation measures (representativeness, Simpson's diversity 

index). 

Algorithm ranking 

  SAI      Simpson 

Average 32.5 18 
Centroid 38.5 10 
Ward 22 43 
Complete linkage 23.5 25 
K-means 19 39 
 

 
Figure 3.3: Average number of species represented by a set of surrogates for the eight classes scheme. 

Surrogates based on geophytes were tested with woody plants only, and vice-versa. 'Rand' stands for a random 

selection of eight cells without classification, repeated 10 000 times. Values are average of 10,000 

permutations of random selection of sites, one site per surrogate class. Error bars are standard deviations of the 

10,000 permutations. Horizontal dashed lines represent total number of species of geophytes and woody 

species. Vertical dashed lines divide between different surrogate types. 
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Domains evenness 

Figure 3.1 shows that the Centroid method effectively produced only one large class across the entire 

area (Fig 3.1), while the remaining seven classes occupied a very small area mostly near the 

perimeter. Four classes occupied only a single cell, and one class occupied two cells, with a value of 

Simpson's index of 0.03 (Fig 3.3), probably representing locations of rare species. Similarly, the 

Average method produced two large classes and six very small classes (Fig 3.1), with four classes 

occupying only a single grid cell, with a value of Simpson's index of 0.42 (Fig 3.4). Ward's method 

produced eight effective classes (Fig 3.1), with a value of Simpson's index of 0.86 (Fig 3.4) for the 

map in Figure 3.1, and so did complete linkage and k-means (D = 0.77 and 0.86 respectively). Wa’rds 

method produced surrogates with the highest Simpson's index value in seven out of nine cases (Fig 

3.3).  

 

Figure 3.4: Simpson's diversity index for each type of surrogate. 
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Ranks given according to Simpson's index are summarized in table 3.3. Analyses of Trakhtenbrot and 

Kadmon's (2006) maps showed that Ward's method always produced maps with higher values of 

Simpson's index, and Average clustering was superior to Centroid in two of the three combinations. 

DISCUSSION 

Evaluating the efficiency of surrogates for biodiversity is a complex task that requires knowledge of 

the entire biological diversity (Rodrigues and Brooks 2007). A common solution is to use a group of 

known species as the target group, and to evaluate how well the surrogates represent them. Ferrier 

and Watson (1997) introduced a measure of efficiency, the species accumulation index, which 

measures how many species out of the entire pool are represented by a set of domains, and also 

compares it to a random selection of sites. Another measure they proposed was the Mantel correlation 

coefficient, which is the correspondence between domains and species distributions (Manly 2007). 

These measures do not fully account for an important aspect of surrogacy, namely, its actual use for 

site selection, and additional information is needed, such as the evenness of the different domains. If 

domains are relatively evenly sized, higher flexibility is allowed for site-selection between various 

options, whereas if some domains are represented by very few pixels (as in the case of the centroind 

algorithm output), little flexibility is left to managers in the site selection process. Evenness is an 

intrinsic trait, thus it is an independent measure of surrogate quality.  

The various algorithms could be divided into two groups: the Average and Centroid methods, which 

represented more species than the other algorithms, but had low values of Simpson's index, and 

Ward's, complete linkage and k-means, which represented less species but had relatively high 

Simpson's values. Unfortunately, none of the algorithms evaluated excelled in both parameters. 

Current conservation practice takes place at two levels, coarse and fine filters (Margules and Stein 

1989, Noss 1990, Pressey et al. 1993, Maddock and Du Plessis 1999, Schwartz 1999, Bonn and 
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Gaston 2005, Orme et al. 2005). Biodiversity surrogates are considered coarse filters, which are tools 

for capturing biodiversity in its broadest sense, including habitats, ecological processes and entire 

ecosystems, as well as individual species (Noss 1990). Fine filters concern rare or endangered 

species, which could have been missed by coarse filter methods. Surrogates with domains that cover 

very small geographic areas (low Simpson Index value), such as those produced by the Average and 

Centroid clustering algorithms, may be difficult for use as coarse-filters, due to the local nature of 

some of the resulting domains. However, since they indicate unique locations, particularly if the 

classification is based on species composition, such methods might be used to locate areas of high 

conservation value, and help to focus small scale conservation efforts. 

The effect of the clustering algorithm on the efficiency of surrogacy has been largely overlooked, and 

very few studies quantitatively evaluated alternative algorithms. Tarkhtenbrot and Kadmon (2006) 

reported that the Centroid algorithm resulted in the best surrogates, which is similar to our results, 

when considering species representativeness alone. However, by calculating Simpson's diversity 

index in addition to species representativeness, I show that what seemed to be the better surrogate 

(centroid-based cluster analysis), may be a less effective tool for biodiversity conservation from 

certain perspectives, although the number of species it represents may be larger. In general, the results 

point out that there is no 'optimal solution' to surrogacy, and each case should be considered 

separately. In fact, results imply that there is a trade-off between species representativeness and 

domain evenness. This trade-off is shown to exist at more than one spatial scale, and for more than 

one set of environmental variables.  

Knight et al. (2008) reported the gap between conservation science and conservation actions. These 

results indicate that a solution that may be considered scientifically superior may, in fact, be 

incompatible for managers. Figure 3.1 is an example of the difference between scientifically 'superior' 

and management-compatible solutions. In conclusion, scientific work on prioritization of areas for 

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



  

 50 

conservation should include a final step, which is mostly disregarded in the literature, i.e. looking at 

the resulting maps, and examining them through a field conservationist's eye.  

Chapter 4 

Developing bio-environmental surrogates for biodiversity: A case study from Mt. Carmel, 

northern Israel 

INTRODUCTION 

Surrogates for biodiversity constitute a principal approach to conservation planning, as they are a 

means of using information on an easily measured (or calculated) feature as an indicator of the 

species assemblage in a given area (Ferrier and Watson 1997). Two types of surrogates exist. 

Environmental surrogates are based on the partitioning of an area into domains with similar physical 

traits, usually by multivariate analyses, as proposed by Belbin  (1993, 1995). Biological surrogates 

are based on the distributional data of a known group of indicator species. There is ongoing debate 

about the effectiveness of the different surrogates in representing true biodiversity patterns. For 

example, Araujo and Humphries (2001) claimed that there is no evidence for the ability of 

environmental surrogates to predict patterns of biodiversity, while Carmel and Stoller-Cavari (2006) 

conducted a direct comparison of the two types of surrogates, by measuring the congruence between 

patterns of the surrogates and of three groups of species. Environmental surrogates were produced 

with k-means classification of the area according to environmental conditions into environmental 

domains. They used analysis of similarity to test for surrogacy efficiency of each species group as 

surrogates for the other groups. They found that the most effective biological surrogates were woody 

species, which performed equally well as environmental surrogates. Dobson et al. (1997) concluded 

that endangered bird and herptile species are the most sensitive surrogates for other endangered 

species in the USA, based on spatial congruence between species distribution maps. Garson et al. 
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(2002a) tested the efficiency of breeding birds as surrogates of species at risk in Quebec. Their results 

indicated that bird species make relatively efficient surrogates in that system. In addition, they stated 

that the spatial scale of the analysis may affect its outcome. Kati et al (2004b) evaluated six groups 

according to their surrogacy efficiency, and found that woody species were the most effective 

surrogates, adequately representing all groups other than orchids. Lawler and White (2008) tried to 

characterize 'efficient' surrogates, according to a set of simple traits, i.e., taxonomic diversity; the 

nestedness of species distributions; biodiversity hotspots; species range sizes; and environmental 

diversity. They concluded that there are no simple characteristics that make effective surrogates. They 

did, however find that in general, biological surrogates performed better than environmental 

surrogates. In a review of 575 studies of both biological and environmental surrogates, Rodrigues and 

Brooks (2007) found generally positive, yet weak evidence that surrogates were effective, and that 

cross-taxon surrogates outperformed surrogates based on environmental data. They also relate to the 

source of the data used. They concluded that the best combination for testing surrogacy efficiency is 

using extrapolated data for the surrogates, and field data for the target species, since it minimizes 

commission and omission errors in the surrogates and targets, respectively. A method for the 

selection of reserve networks that is based on either environmental or biological data was presented 

by Faith and Walker (Faith and Walker 1996). They propose to calculate the 'environmental diversity' 

represented by a set of sites. Environmental diversity is calculated from an ordination space, allowing 

the use of actual environmental data, or inferred environmental data, derived from the ordination of 

distributional data. That approach offers an additional advantage - unlike clustering methods resulting 

in discrete units, the space from which sites are selected is continuous. It also allows calculating 

which of the remaining sites will contribute the most to the representativeness of the environmental 

diversity.  A different approach combines the two types of surrogates to create a hybrid surrogate 

(Ferrier 2002, Ferrier et al. 2002, Sarkar et al. 2006). In their review of hybridization approaches, 
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Ferrier and Guisan (2006) related to the excess information existing in spatial representations based 

on both environmental parameters and best available biological data. They presented three 

approaches of community-level modeling. The first approach - ‘a ssemblefpre ,irstdict late’r  involves 

assembling of available survey data into 'community entities', and then modeling the distribution of 

these entities in relation to environmental predictors; ‘predict fass ,irstemble late’r, in which the first 

step is producing distribution models for all available species, stacking them, and aggregating them 

by means of classification or ordinatiand ;on ‘assemble and predict togethe’r, in which all species are 

subjected to a single simultaneous modeling process in relation to environmental conditions. Here a 

new approach to the hybridization of biological and environmental surrogates, bio-environmental 

surrogates (BES), is presented. It includes the ‘predict fasse ,irstmble later’ approac has a first ste p of

the analysis. This step involves creating a predicted habitat-suitability map for each surrogate species, 

and then dividing the area to domains of similar species composition. The next step was to directly 

combine the results of this step with environmental data in order to produce fully hybridized 

surrogates.  

Ecological theory supports the concept of BES as possibly superior to both its precursor surrogates. 

Species occupy a realized ecological niche, a multi-dimensional space confounded by inter-specific 

interactions such as competition, predation and parasitism, as well as dispersal limitations and chance 

effects (Connell 1961, Vandermeer 1972, Wilson et al. 2003). I suggest that BES follow the same 

principal, constraining environmental domains according to biological patterns. The goal of this study 

is to develop a new approach for producing hybrid surrogates for biodiversity, based on both 

environmental and biological data and evaluate their efficiency in representing species, under the 

hypothesis that such hybrid surrogates will represent biodiversity more efficiently than single source 

surrogates, while maintaining relatively high levels of evenness, making them efficient tools for 

conservation practitioners. 
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METHODS 

Study area 

The study took place on Mt. Carmel, northern Israel, in an area of approximately 280 km
2
. Climate in 

the study area is eastern Mediterranean, with mean annual rainfall of ~650 mm and average daily 

temperatures of 11
o
C and 24

o
C in January and August, respectively. Vegetation is defined as eastern 

Mediterranean scrubland, consisting of structurally rich and diverse vegetation communities (Naveh 

and Dan 1973b, Naveh and Kutiel 1986). These vegetation mosaics are highly heterogeneous at a 

broad range of spatial scales, ranging from grain size as small as a few meters to landscape level 

scales (Naveh 1975, Bar Massada et al. 2008). The mosaic is characterized by woody patches, 

herbaceous clearings, exposed rock, and bare ground (Perevolotsky 2002). The study area was 

divided into 1145 cells by a superimposed grid with mesh size of 500 x 500 m. 

Species distribution data 

Presence-absence data for geophytes and woody species were collected in 100 sampling sites 

distributed randomly across the study area from October 2002 to May 2003 (see Carmel and Stoller-

Cavari 2006 for a complete description of fieldwork). These groups were used in the analyses for two 

main reasons. First, there was high-quality presence –absence data with good spatial coverage of the 

study area for these groups (Carmel and Stoller-Cavari 2006). Second, vascular plants in general, and 

woody species in particular were used successfully as surrogates for biodiversity in the past 

(Chiarucci et al. 2000, Pharo et al. 2000, Kati et al. 2004b). These data were used, along with several 

environmental parameters (Table 4.1) to produce habitat suitability maps for 23 geophyte species and 

37 woody species (Appendix 1). Habitat suitability maps, consisting of probability of occurrence for 

each species, were produced by applying logistic regression models (MacNally et al. 2003) to the 

study area. Species distribution maps were produced by assigning presence/absence values to each 
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cell, according to its probability, with a threshold of 0.5. Model parameters were selected using 

forward stepwise selection, with a significance level of <0.05.  Ferrier et al. (2002) referred to this 

approac hamode‘ sling fi rst– classification later’ community level modeling. 

Table 4.1: Environmental parameters used in the study for logistic regression models and environmental 

surrogates for biodiversity 

Parameter Description 

NDVI Normalized difference vegetation index – a measure of primary 

productivity 

DTR Distance to nearest road 

Terrarossa Presence-absence of Terrarossa soil in grid cell 

Rendzina Presence-absence of Rendzina soil in grid cell 

Veg cover Presence-absence of woody vegetation cover in grid cell 

Rain Average annual precipitation 

mdt1 Mean daily temperature in the coldest month (January) 

mdt8 Mean daily temperature in the hottest month (August) 

Aspect Topographic aspect derived from a DEM  

Slope Topographic slope derived from a DEM 

Elevation Elevation derived from a DEM 

 

Environmental data 

Environmental parameters used in this study included parameters with expected ecological 

significance, such as measures of climate, soil type included two dummy variables of the two most 

common soils in the study area, i.e. Rendzina and Terra-rossa, vegetation, topography, and distance 

to the nearest road as a measure of anthropogenic disturbance (Table 4.1). Topographic parameters 

were derived from a digital elevation model of the study area. A total of 11 parameters were used 

(Table 4.1), both for the logistic regression models mentioned above, and as the basis of the 

surrogates for biodiversity (environmental and BES). All parameters were extracted from Geographic 

Information System (GIS) layers and averaged over each of the 500 m cells. 
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Production of surrogates for biodiversity   

All types of surroga tesand precursors were produced using hierarchical cluster analysis with Wa’rd s

method of minimum variance (Ward 1963, Legendre and Legendre 1998), to partition the study area 

into domains with similar species composition (biological surrogates), or similar environmental 

condite( ionsnvironmental surroga(tes. Wa’rds method produces doma insthat are more evenly 

distributed than other clustering methods, rendering it more useful for management purposes, as 

demonstrated in chapter 3. Cluster analyses were carried out with Matlab 7.3 (MathWorks, Natick, 

Massachusetts, USA). 

Biological surrogates 

In order to produce biological surrogates from the presence-absence data, A similarity matrix was 

calculated using the Jaccard similarity index for each pair of cells in the study area. Each functional 

group (geophytes and woody species) was used to produce a separate set of domains, which was then 

evaluated against the other functional group.  

Environmental surrogates 

The Gower similarity index was used as the basis for the environmental cluster analysis 

(Trakhtenbrot and Kadmon 2005, 2006). The Gower similarity index is most suitable for describing 

relationships between cells in a multidimensional space created by numerous environmental 

parameters. It is a robust metric, which performs well on both continuous and categorical parameters 

(Gower 1966, 1971, Legendre and Legendre 1998). Dunn and Everitt (1982) found that Gower 

similarity index was equal to Jaccard similarity index when binary data was used. Environmental 

surrogates were produced through the same process as biological surrogates. Performance of 

environmental surrogates was evaluated against both functional groups (geophytes and woody 

species). 
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Bio-environmental surrogates (BES)  

Bio-environmental Surrogates (BES) are hybrid surrogates for biodiversity constructed using both 

environmental and biological data. Hybrid surrogates have been proposed in the past (Ferrier 2002, 

Ferrier et al. 2002, Sarkar et al. 2006) as possibly superior to either type alone. 

Table 4.2: The different types of surrogates for biodiversity 

 Surrogate name Description 

Single 

source 

Environmental 
Environmental surrogate, based on cluster analysis 

using War’ds method of minimum variance 

Geophytes 
Biological surrogate, based on cluster analysis of 

geophytes’ distribution using War’ds method 

Woody species 
Biological surrogate, based on cluster analysis of 

woody species distributi onusing War’ds method 

Hybrid 

Niche_geophytes Niche BES using geophytes distribution  

Niche_woody_species Niche BES using woody species distribution 

Reverse niche_geophytes Reverse niche BES using geophytes distribution 

Reverse niche_woody_species Reverse niche BES using woody species distribution 

Intersection_geophytes Intersecting BES using geophytes distribution 

Intersection_woody_species Intersecting BES using woody species distribution 

 

Here three alternative approaches for combining biological and environmental information to produce 

BES are proposed. The first approac h)hereafter the ‘niche approac’h( is a hierarchical two-step 

classification of the area into domains. The first step is to produce environmental domains, each of 

which is then divided into sub-domains using biological information. The biological sub-domains are 

produced for each environmental domain independently by cluster analysis of the species present 

within each domain. Three environmental domains were produced, and three biological sub-domains 

for each environmental domain, yielding a total of nine domaThe .ins ‘reverse-niche approac’h 

employs the same classification routine as described for the ‘niche approac’h, above, only in reverse 

order. The study area is first classified into biological domains, and then each domain is subdivided 

using environmental information. In the ‘intersection approach’, the first step is to create 

environmental and biological domain layers, independently. The second step is an intersection of the 
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two layers to form the hybrid domains. All surrogate maps, including the biological, environmental 

and hybrid surrogates, comprised nine domains.   

Performance evaluation 

Two parameters were used to evaluate surrogate performance, representativeness and evenness. 

Species representativeness was evaluated as the average number of species of geophytes and woody 

species represented by a random selection of a single site from each domain, which was calculated for 

each surrogate type, using a Monte-Carlo permutation procedure with 10,000 repetitions using 

Matlab. Performance measures of the three different hybridization approaches were compared to each 

other and to environmental and biological surrogates. The results were compared to a random 

selection of nine sites from the entire study area using the same Monte-Carlo procedure, in order to 

examine whether the produced surrogates were better than random. In order to evaluate the level of 

evenness of the domains within each surrogate map, Simpson’s diversity index was calculated for 

each surrogate map.  

The biological surrogates and BES were produced once using geophytes data, and once using woody 

species data. Surrogates based on geophytes were evaluated against woody species, and vice versa. 

Environmental surrogates were evaluated against both functional groups. 

Surrogate fragmentation 

Fragmentation metrics were calculated at the landscape level, i.e. the total number of patches in the 

surrogates maps, and the level of cohesion of the entire map, using Fragstat 3.4 (McGarigal et al. 

2002). Cohesion is calculated as follows:  
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Where pij = perimeter of patch ij in terms of number of cell surfaces; αij =     area of patch ij in terms 

of number of cells; and A = total number of cells in the landscape. It is a dimensionless measure of 

the overall connectedness of the various components of the map. High cohesion levels indicate low 

fragmentation. 

RESULTS 

Surrogate representativeness 

A random selection of nine sites resulted in an average representation of 17.6 of 23 geophyte species 

and 30.1 of 37 woody species (Fig. 4.1). When a single cell of each domain was selected, biological 

surrogates based on woody species represented an average of 18.6 geophyte species. Surrogates based 

on geophytes represented 31.8 woody species (Fig. 4.1). Environmental surrogates performed 

similarly to biological surrogates. Selection of a single cell from each domain of environmental 

surrogates, produced in the same manner as the biological surrogates, represented an average of 18.4 

geophytes and 32.3 woody species (Fig. 4.1).  

BES were produced using three different approaches, and all three surrogates represented 

considerably higher numbers of geophytes and woody species than both biological and environmental 

surrogates. The Niche BES domains represented 36.98 woody species, while both reverse-niche and 

intersection BES domains represented 36.8 of 37 woody species. All three BES approaches resulted 

in representation of 22.9 of 23 geophytes species (Fig. 4.1). The differences are significant for both 

geophytes (one-way ANOVA, F=38,000.062, p<0.001) and woody species (one-way ANOVA, 

F=26,449.102, p<0.001). 

Surrogates fragmentation 

A qualitative visual examination of the resulting maps (Fig. 4.2) revealed that BES were 

characterized by relatively uniform and continuous domains, while domains produced using single-
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source surrogates were more fragmented and irregularly shapeS .dimpson’s diversity index va lues

ranged between 0.81 for intersection-BES based on geophytes to 0.89 for biological surrogates based 

on woody species. Due to the high values and small differences, all surrogate types were considered 

as equal in the evenness evaluation. All biological surrogates had more patches and lower cohesion 

values than the environmental surrogates. 

 

 

Figure 4.1: The average number of geophytes (top) and woody species (bottom) 

represented by each surrogate, calculated by applying a Monte-Carlo 

randomization procedure with 10,000 permutations.  
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Figure 4.2: Comparative maps of surrogates for biodiversity on Mt. Carmel, northern Israel. The top three maps are 

single-source surrogates (either environmental or biological); the other six are hybrid surrogates. Each surrogate 

map consists of nine units, represented by the different colors. Surrogate name codes are specified in Table 4.2. 
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Figure 4.2 continued 
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Figure 4.2 continued  

 

BES values of both the number of patches and cohesion were similar to those of the environmental 

surrogates (Fig. 4.3). The only exception was niche-BES based on geophytes, which had a cohesion 

level similar to the other BES, but the number of patches was between BES and the biological 

surrogates (Fig. 4.3). 
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Figure 4.3: Measures of fragmentation of the different surrogate types. Open bars are the number of patches in 

the maps. Black bars are the cohesion level of the maps. 

 

DISCUSSION 

The results confirmed that hybridization of surrogates for biodiversity, i.e. the use of environmental 

and biological information for classifying the area into domains, increased the number of species that 

can be represented in a reserve network of a certain size, compared to single-source surrogates. 

Although this concept has been suggested before (Kirkpatrick and Brown 1994, Ferrier and Watson 

1997) but was never applied in practice. This work presents a novel approach to surrogate 

hybridization, with quantitative indication of its superiority over single-source surrogates.  

The principal advantages of BES are best understood in light of the ecological niche theory 

(Hutchinson 1957). Environmental surrogates resemble a potential ecological niche of a species 

assemblage. Biological surrogates contain information on the confounding effects of the niche, but 

they lack explicit information on its physical traits. Hybridization of these two information sources 
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may combine both information types into an equivalent of the realized niche of the species 

assemblage (Ferrier et al. 2009). The concept of hybrid surrogates for biodiversity has existed for at 

least a decade (Ferrier and Watson 1997). The main obstacle along the way to producing them has 

been the differences between continuous environmental data and binary species distribution data. By 

applying the same clustering algorithm, i.e. Wa’rd s method(Ward 1963, Legendre and Legendre 

1998), to both datasets and using interchangeable measures of similarity (Gower and Jaccard 

coefficients for environmental and biological data, respectively), compatible spatial domains were 

produced. BES contains information on both environmental filters and the biological factors refining 

them. 

Environmental parameters were also used to produce environmental surrogates for modeling species 

distributions for the biological surrogates. These affected the hybrid surrogates twice, indicating 

possible redundancy. However, the impact of environmental parameters on the spatial distribution of 

biological surrogates was different from the respective impact on environmental surrogates, since 

different sets of environmental parameters were selected for each spec’ies model, and environmental 

parameters affected spatial patterns of different species in different manners. In any case, such 

redundancy, if existed, would have acted to reduce the predictive power of BES. Thus, the 

conclusions regarding the superiority of BES over biological and environmental surrogates are not 

likely to change due to this potential redundancy. 

In conclusion, planning reserve networks with the aim of conserving biodiversity effectively is 

complex, often requiring both financial and land resources, which are very difficult to come by. Thus, 

in recent years, conservation biologists have increased their efforts to develop more effective 

surrogates for biodiversity, in order to mitigate the need for resources, and to shorten the time needed 

to collect sufficient data to make conservation decisions (Margules and Stein 1989, Maddock and Du 
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Plessis 1999, Schwartz 1999). Hybridization of environmental and biological surrogates seems to be a 

step towards making surrogacy more accurate, and thus more efficient and robust. 

CHAPTER 5: SYNTHESIS 

This work concerns scale-dependent species – environment relationships, and how they can be 

incorporated into conservation science in order to increase the efficiency of the limited resources 

available for biodiversity conservation. As the relationships between species composition patterns 

and environmental variables are scale dependent (Wiens 1989, Levin 2000) environmental surrogates, 

which are based on the concept of the ecological niche and represent the various niches occupied by 

the species in the area of interest, are also scale dependent. Thus, it is problematic to assume that 

surrogates derived from remotely sensed data at large spatial scales will be efficient in predicting 

local scale patterns in biodiversity distribution. I propose that analyses aimed at producing surrogates 

for biodiversity should be conducted at a scale appropriate for the conservation of the target species. 

Such scale-specific surrogates may be produced by quantifying the effect of the various 

environmental variables affecting the assembly of species in the area of interest. Using the results 

from analyses such as those presented in chapter 2 of this work in order to create a weighting scheme 

of environmental variables that enter the analyses of environmental or hybrid surrogates may result in 

accurate scale-specific surrogates more efficient than surrogates produced using non-weighted or 

arbitrarily weighted environmental variables.  

The different chapters of this work relate to the research objectives presented in the introduction 

section which address two central questions related to species-environment relationships. The first 

question relates to the understanding of the relationships between species and their environment, and 

how they are affected by spatial scale. Spatial scale is important here not only due to geographical 

distances involved, but rather a change of scale alters the length and shape of the environmental 

gradients involved in species composition assembly, as well as the species that are affected by them 
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(Ferrier and Watson 1997). From the results of the analyses in chapter 2, it is clear that environmental 

parameters have differential responses to changes in spatial scale. Theory suggests that climate is the 

most important environmental variable at large spatial scales, and that its effect increases with spatial 

scale, since climate is heterogeneous at large scales, while at smaller scales, it is relatively 

homogeneous (Menge and Olson 1990, Palmer and Dixon 1990). Results presented in chapter 2 give 

a quantitative affirmation to that theoretical prediction. In addition, breaking down climate into 

individual variables (temperature, precipitation and the seasonality of them) revealed that temperature 

is the single variable accounting for the largest proportion of explained variance in mammal species 

composition in the USA. The answers to the main research questions, as presented in this work, may 

help conservationists in their attempts to protect biodiversity, as demonstrated by the example given 

below. The second major research question derived from the specified research objectives relates to 

the ability to increase the efficiency of surrogates for biodiversity in conservation planning, by 

relating species-environment relationships from one group of species to another, and inferring on its 

spatial distribution. Results presented in chapters 3 and 4 indicated that by using certain classification 

methods, and by combining biological and environmental information, the efficiency of surrogacy 

may increase considerably. Since surrogacy is based on the ecological niche concept (Margules et al. 

2002), the quantification of the species-environment relationships can be directly related and 

incorporated into the surrogate production process, rendering it more efficient and more accurate than 

existing surrogacy approaches. 

An example of that concept is given - Consider for example the selection of areas for a reserve 

network for the conservation of mammalian diversity in the contiguous USA, and consider that the 

grid has a cell size of 100 km
2
. Using either environmental surrogates (chapter 3) or BES (chapter 4), 

and applying the results of chapter 2, one can assign scale specific weights to each environmental 

parameter using a simple procedure, making surrogacy more efficient. 
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Using the marginal effects of the different parameter classes (Ter Braak 1986), one can calculate the 

relative contribution of each class (measured as explained variance) to the overall performance, and 

apply these relative values (Fig. 5.1) as the weights of the different parameter classes. The efficiency 

of surrogates for biodiversity in representing target species is still controversial (Rodrigues and 

Brooks 2007), however they are the most effective tool for designing reserve networks in an attempt 

to reduce rates of species extinctions and habitat loss.  

 
Figure 5.1: Relative importance of the different parameter classes, in percent, at a 100 km

2
 scale 

Summary and conclusions 

Understanding the determinants of spatial patterns of biodiversity, be it species, communities or 

ecosystems, is a central question in ecology (Whittaker 1967, MacArthur 1972). Studying the effect 

of these relationships on biodiversity conservation contributes to conservation scientists and 

practitioners (Ferrier and Guisan 2006).  

The main difficulty in performing large scale analyses on species composition determinants is lack of 

appropriate data (dedicated biological surveys, resulting in detailed presence-absence or abundance 

data), especially in the most diverse areas of the world (Elith et al. 2006, Ferrier and Guisan 2006). In 

chapter 1 I used virtual species to test whether available presence-only (PO) data are indeed 
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inappropriate for analyzing large scale species composition determinants, as suggested by several 

studies. The analyses revealed that at large scales, PO data are sufficient for composition analyses, 

due to excess information in the dataset, resulting from the multitude of species in the analysis. Since 

the simulations were based on real environmental data, and the PO dataset was created using actual 

occurrences from the Global Biodiversity Information Facility (GBIF 2008), the results reflect on the 

true ability of the methods I used to evaluate the relationships between species composition and its 

environmental determinants. These results allowed me to proceed with the analyses of the 

relationships between the composition of mammals in the USA and environmental parameters, and 

how they are affected by spatial scale, described in chapter 2. In that chapter I performed analyses on 

large scale determinants of mammal species composition in the USA, This kind of analyses were 

possible based on the results of chapter 1, and provide first evidence of large-scale environmental 

determinants of species composition, testing long existing theories. 

Hybridization of biological and environmental surrogates was first suggested over a decade ago 

(Kirkpatrick and Brown 1994, Ferrier and Watson 1997), but very few attempts have been made to 

actually develop such surrogates (e.g. Ferrier and Guisan 2006). One reason for that is the difficulty 

to combine data from different sources. Biological data are usually in the form of binary data of 

species in selected survey sites (Legendre et al. 2005), i.e. they are not continuous in space (data exist 

only for visited sites) or in form (they have a value of 0/1). On the other hand, environmental data are 

often derived from remote sensing sources, and continuously cover large geographic extents. They 

also often have continuous values. In order to create spatially continuous biological data, I used an 

approach developed by Ferrier and Guisan (2006) termed by the authors 'predict first, assemble later', 

in which the binary presence-absence data for each species is first used to create a predicted 

distribution map, and then a classification is performed on the stacked distribution maps. Using 

interchangeable similarity measures i.e. Jackard and Gower (Dunn and Everitt 1982), on the 
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biological and environmental data respectively, it was possible to use both types of data in a single 

surrogacy analysis. Chapters 3 and 4, relying on the assumption that the relationships between one 

group of species and it physical environment can be used to infer on the distribution of other groups, 

present two novelties – first I introduce a new approach to the evaluation of surrogacy efficiency, 

which makes surroga tesmore applicative from a practitione’rs poi nt ofview. Second I introduce the 

first fully hybridized bio-environmental surrogates. 
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Appendix 1 – A list of woody and geophyte plant species in the Carmel surrogate 

analyses 

Scientific name  Common name 

Woody plant species 

Arbutus andrachne  Greek strawberry tree 

Asparagus aphyllus  Prickly asparagus  

Calicotome villosa  Spiny broom 

Cistus creticus   Sage leaved rock rose 

Cistus salviiifolius  Soft-hairy rock rose 

Clematis cirrhosa  Virg in’sBower 

Ephedra foemina  Leafless ephedra 

Fumana arabica  Arabian cistus 

Fumana thymifolia  Thyme rock rose 

Genista fasselata  

Laurus nobilis   True Laurel 

Lonicera etrusca  Italian honeysuckle 

Majorana syriaca  Wild Marjoram 

Micromer fruticosa  White leaved savory 

Myrtus communis  common myrtle 

Olea europaea   Olive tree  

Osyris alba   Poet’s Cassia 

Phgnalon rupestre  African fleabane 

Phillyrea latifolia  Broad-leaved phillyrea 

Phlomis viscosa  Shrubby Jerusalem sage 
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Pinus halepensis  Aleppo pine 

Pinus pinea   Stone pine 

Pistacia lentiscus  Mastic tree 

Pistacia palaestina  Terebinth tree 

Prasium majus  Great hedge-nettle 

Quercus calliprinos  Kermes Oak 

Rhamnus lycioides  Palestine buckthorn 

Rhamnus alaternus  Italian buckthorn 

Rubia tenuifolia  Common Madder 

Ruscus aculeatus  

Salvia fruticosa  Trhee-lobed sage 

Sarcopoter spinosum  Prickly burnet 

Satureja thymbra  Savory of Crete 

Stachys plaestina  

Thamua sp. 

Theucrium divaricatum  

Thymelaea hirsute  Shaggy sparrow-wort 

Geophyte species 

Allium trifoliatum  

Anemone coronaria  Crown anemone 

Arisarum vulgare  Aha’rons rod 

Arum dioscoridis  Spotted arum 

Asphodelus ramosus  Common asphodel 

Ruscus aculeatus  
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Emex spinosa   Spiny dock 

Scila hyacinthoides  Hyacinth squill 

Ophrys tricolor   

Ophrys fleischmanii  

Gynandriris sisyrinchium  Barbary nut  

Narcissus tazetta  Common narcissus 

Ornithogalum narbonense Narbonne star-of-Bethlehem 

Pancratium parviflorum Small flowered Pancratium 

Cyclamen persicum  Persian Cyclamen 

Cephalanthera longifolia Long-leaf Helleborine 

Orchis galilaea  Orchid 

Limodorum abortivum Violet Limodore 

Allium carmeli    

Allium neapolitanum  Naples garlic 

Serapias vomeracea  Snake tongue orchid 

Umbilicus intermedius Common pennywort 

Gagea commutate  Stolonous Gagea 
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 יחסים בין משתני סביבה להרכב מינים והשלכותיהם על סמנים של
 מחקר בסקאלות מרובות -מגוון ביולוגי 
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 ח יוחאי כרמל"המחקר נעשה בהנחיית פרופ
 
 
 
 
 
 
 

 אני מודה לטכניון על התמיכה הכספית הנדיבה
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 תקציר

הבנת היחסים הללו עשויה . מינים במרחב הם נושאים מרכזיים באקולוגיהה הרכבוהגורמים ל, תםהיחסים בין מינים לסביב

הקשורות בעושר , קיימות מספר תיאוריות המנסות להסביר תופעות בסקאלות גדולות. לשמירה על המגוון הביולוגילתרום 

מתחרות כגון יחס עושר  ידי תיאוריות-מוסבר על, לדוגמא הגראדיינט במספר המינים מקו המשווה לכיוון הקטבים. המינים

. וקצבי הכחדות והתמיינות שונים לאורך הגראדיינט, כמות האנרגיה הזמינה, גיאוגרפיה של איים-הלקוח מביו, מינים לשטח

ולפיו כל , המודל הראשון הוא ניטרלי. אולם קיימים שלושה מודלים עקרוניים, לגבי הרכב מינים קיימות פחות תיאוריות

וההבדלים בהרכב המינים הם תוצאה של תהליכי אקראי של הפצה , ה מבחינה אקולוגית ותחרותיתהמינים שווים זה לז

ידי מכלול התנאים הסביבתיים -לפיו הרכב המינים בשטח מסוים נקבע על,  המודל השני הוא המודל הסביבתי. והתבססות

בתוך ובין רמות טרופיות , המינים השוניםלפי המודל השלישי הרכב המינים הוא תוצאה של אינטראקציות בין . באותו שטח

ולצורך תכנון לשמירת טבע בשטחים , לצורך ניתוח היחסים בין מינים לסביבתם(. למשל תחרות וטריפה בהתאמה)שונות 

ההשקעה הדרושה כדי לאסוף אותם . אשר אינם קיימים, ובאזורים נרחבים, נרחבים יש צורך בנתוני תפוצה של מינים רבים

בשני   עבודה זו מנסה לקדם את הכלים המדעיים לשמירה על המגוון הביולוגי. אפשריים לאיסוף-ם לבלתיהופכת אות

ראשית ביצעתי השוואה בין שיטות להפקת מפות של סמנים . לבעיית זמינות הנתונים, לפחות חלקי, ולתת פיתרון, מישורים

, והצעתי מדד נוסף לבחינת היעילות של סמנים כאלו, (surrogates for biodiversity)ביולוגיים וסביבתיים למגוון ביולוגי 

כיום קיימים שני סוגי סמנים למגוון . המבוסס על מידת השוויוניות בגודל של היחידות השונות המרכיבות את מפות הסמנים

מדת בבסיס וההנחה שעו, סביבה דומים-סמנים סביבתיים מבוססים על חלוקה של המרחב ליחידות בעלות תנאי. ביולוגי

לפי המודל , השיטה היא שייצוג של כלל תנאי הסביבה בשטח מסוים יביא לייצוג של כלל המגוון הביולוגי באותו שטח

שיש עליהם נתוני תפוצה טובים וניתן להסיק מהתפוצה שלהם , סמנים ביולוגיים הם קבוצת מינים. הסביבתי להרכב מינים

מיני , פרפרים, חיים-לדוגמא דו, ל שימוש במספר רב של קבוצות מינים כסמניםיש תיעוד ש. לגבי התפוצה של כלל המגוון

לצורך כך . עבור הכרמל, כלומר ביולוגיים וסביבתיים, אני הכנתי מפות של סמנים משני הסוגים. צומח מעוצה וציפורים

מיקומים אקראיים בכרמל  100-השתמשתי בסט קיים של נתוני תפוצה של מיני גיאופיטים ומיני צומח מעוצה שנסקרו ב

ידי -מיני צומח מעוצה על 37-מיני גיאופיטים ו 23-הנתונים האלו שימשו ליצירת מפות תפוצה ל. ליצירת סמנים ביולוגיים

יצרנות ראשונית ומדד , טופוגרפיה, לצורך יצירת סמנים סביבתיים השתמשתי בנתוני אקלים. מודלים של רגרסיה לוגיסטית

ארבע שיטות הירארכיות ואחת לא , אשכולות-ת הסמנים יצרתי בחמש שיטות סיווג שונות של ניתוחא. של הפרעה אנושית
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. השתמשתי בשני מדדים לבדיקת היעילות של הסמנים. והשוויתי את היעילות של הסמנים כתלות בשיטת הסיווג, הירארכית

המדד השני מוצג כאן בפעם הראשונה . ניםידי ייצוג כל היחידות של הסמ-הראשון הוא מספר מיני המטרה המיוצגים על

ההשוואה . והוא כולל חישוב של השוויוניות בגודל היחידות השונות של הסמנים, כמדד ליעילות של סמנים למגוון ביולוגי

היא שיטת וורד למינימום שונות , בין אם ביולוגיים או סביבתיים, העלתה ששיטת הסיווג היעילה ביותר ליצירת סמנים

(Ward's method of minimum variance) .המבוססים על שילוב בין סוגי הסמנים , בנוסף פיתחתי סוג חדש של סמנים

, של המאה הקודמת הציעו חוקרים ששילוב של שני סוגי הסמנים 90-כבר בשנות ה. סביבתיים-כלומר סמנים ביו, הקיימים

, ידי שימוש בסמנים-יצוג טובה יותר של המגוון הביולוגי עליוביל ליכולת י( ביולוגי וסביבתי)ושימוש בשני סוגי המידע 

בעבודה זאת מוצגות שלוש גישות ליצירת . אולם זאת הפעם הראשונה שסמנים כאלו מפותחים ונבדקים בצורה כמותית

. שתשלביות מבוססות על עיקרון הנישה האקולוגית הממומ-שתי גישות היררכיות דו. הסמנים היברידיים למגוון ביולוגי

בדומה , כוללת בשלב הראשון חלוקה של המרחב ליחידות בעלות תנאי סביבה דומים, גישת הנישה –הגישה הראשונה 

גישת  –הגישה השנייה . יחידות בעלות הרכב מינים דומה-ובשלב השני חלוקת משנה של כל יחידה לתת, לסמנים סביבתיים

כלומר ראשית מחלקים את המרחב ליחידות בעלות הרכב , פוךאך בסדר ה, הנישה ההפוכה מתבצעת בדיוק באותה השיטה

הגישה השלישית היא לא . יחידות בעלות תנאים סביבתיים דומים-ולאחר מכן חלוקת משנה של כל יחידה לתת, מינים דומה

קבלת סביבתיים וביולוגיים בנפרד ואז חיתוך של המפות אחת עם השנייה ל, היררכית וכוללת הכנה של שתי מפות סמנים

ללא תלות בגישה בה , הסמנים החדשים ייצגו את מיני המטרה בצורה כמעט מושלמת, בבדיקה שערכתי. יחידות חדשות

לכמת את מידת השינוי ביחסים   ההמטרה העיקרית השנייה של עבודה זאת היית. סביבתיים-השתמשתי ליצירת הסמנים הביו

המכשול העיקרי לביצוע ניתוחים מסוג . כתלות בסקאלה המרחבית, כב זהבין הרכב מינים ותנאי הסביבה המשפיעים על הר

, הנתונים היחידים שקיימים הם נתוני אוספים, בסקאלות מרחביות גדולות. זה הוא זמינות של נתוני תפוצה של מינים

בוססים על סקרים ראשית הנתונים אינם מ. בלבד היא כפולה-הבעיה עם נתוני נוכחות. בלבד-שמכילים מידע מסוג נוכחות

נתונים מסוג זה מכילים . היעדרות-כמו נתוני נוכחות, ייעודיים ולכן אינם מכסים את שטח המחקר בצורה אחידה או אקראית

כלל קיימים -בדרך, הנובעת באופן ישיר מהפיזור של הנתונים במרחב, הטיה גיאוגרפית. הטיה משלושה סוגים עיקריים

ם ואזורים מיושבים ולעומת זאת יש מיעוט נתונים באזורים שהגישה אליהם היא יותר נתונים רבים בקרבה רבה לכבישי

, הסוג האחרון של הטיה הוא טקסונומי. כלומר לא כל תנאי הסביבה מיוצגים בנתונים, הטיה נוספת היא סביבתית. קשה

לעומתם מינים פופולריים פחות או ו, יותר או בולטים יותר שיהיו מיוצגים בעודף בנתונים םכלומר ישנם מינים פופולריי
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 VI 

, הימצאות של מין מסוים במיקום כלשהוא אינה מעידה על היעדרות אמיתית-אי, בנוסף. קריפטיים יותר יהיו מיוצגים בחסר

מסיבות אלו נתונים כאלו נחשבים כלא מתאימים לבחינת היחסים . אלא על כך שאיש לא תיעד את אותו המין באותו המיקום

הדיון האם . גידול עבור מין בודד המבוססים על נתוני נוכחות בלבד-כן קיימים מודלים של בתי. נים לסביבהבין הרכב מי

והדעות עדיין חלוקות לגבי היעילות של מודלים כאלו לחזות תפוצה של , ניתן להשתמש בנתונים אלו עבור מודלים נמשך

כמו אלו שקיימים במאגרי מידע ממוחשבים גדולים כדוגמת , בלבד-על מנת לבדוק האם ניתן להשתמש בנתוני נוכחות. מינים

Global Biodiversity Information Facility (GBIF) , ותנאים סביבתיים הרכב מיניםלצורך ניתוח כמותי של יחסי ,

תנאים  ועל, GBIFב מתוך "ביצעתי סימולציות עם מינים וירטואליים המבוססים על נתוני תצפיות אמיתיות על מינים בארה

השפעה על תוצאות של ניתוח מרובה משתנים  ההסימולציות הראו כי לסוג הנתונים לא היית. ב"סביבתיים אמיתיים מארה

תוצאות . ב"מינים וירטואליים שהיו מפוזרים בשטח היבשתי של ארה 50של הפרמטרים הקובעים את הרכב המינים של 

סביבה של יונקים יבשתיים -כלומר ניתוח השינוי ביחסי מינים, זאת הסימולציה אפשרו לי לבצע את השלב האחרון בעבודה

-לשם כך חישבתי את אחוז השונות בהרכב המינים המוסברת על. כפונקציה של סקאלה מרחבית, ב"בשטח היבשתי של ארה

. וניתקרקע ותכסית ויצרנות ראש-שימושי, טופוגרפיה, אקלים –ידי כל אחת מארבע קבוצות של פרמטרים סביבתיים 

התוצאות של הניתוחים . ר"קמ 10,000 -ל 100עם תאי גריד בגודל שנע בין , הניתוחים בוצעו בארבע סקאלות מרחביות

הם הפרמטרים החשובים ביותר בקביעת הרכב מיני היונקים , כגון טמפרטורה ומשקעים, הללו הראו שמשתני אקלים

קרקע ותכסית היו חשובים גם כן בסקאלות קטנות וסקאלות  משתני שימושי. בכל הסקאלות המרחביות שנבדקו, ב"בארה

טופוגרפיה ויצרנות ראשונית היו בעלי השפעה חלשה יותר . אולם היו פחות חשובים בסקאלה הגדולה ביותר, הביניים

, ניתן לשלב בין שני כיווני המחקר שתוארו לעיל. והשפעתם נחלשה ככל שהסקאלה המרחבית גדלה, בסקאלות שנבדקו

ולהשתמש ביכולות אלו לייעול התכנון של שמורות טבע , ורך שיפור של יכולת החיזוי של תפוצת המגוון הביולוגילצ

 . בסקאלות יחסית גדולות, ואזורים מוגנים
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