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Abstract. Empirical modeling of vegetation dynamics can be used for predictive pur-
poses. The goal of the present study is to construct and evaluate possible approaches for
empirical modeling of vegetation dynamics, and to investigate their potential use in planning
and management.

An empirical model of mediterranean vegetation dynamics was constructed using a case
study of vegetation change in an area in the Galilee mountains, northern Israel, between
1964 and 1992. Present vegetation in any location was modeled as a function of past
vegetation and environmental factors (e.g., topography and various disturbances); future
vegetation was then modeled as a function of current vegetation and effects of environmental
factors. In order to assess model performance, we compared the actual vegetation map with
maps representing model realizations for the study area and for an external validation area.
Three types of measures were used to compare the predicted and actual vegetation maps:
overall vegetation composition, pattern indices, and cell-by-cell match. We compared the
performance of logistic vs. linear models and of stochastic vs. deterministic realizations of
a logistic model.

Our results indicate that landscape-scale vegetation dynamics can be fairly well modeled
using a few biologically important variables. The logistic and linear models had similar
performance, in spite of the reduced information on which the logistic models were based.
The use of only a 4% sample of the database resulted in a negligible reduction in model
performance. Model performance was reduced, but was still fair, when applied to an external
area. The merits and limitations of this modeling approach are discussed in comparison
with other approaches for modeling vegetation dynamics.

Key words: aerial photographs; empirical model; GIS; mediterranean vegetation; polychotomous
logistic model; predictive modeling; spatiotemporal models; succession; vegetation dynamics.

INTRODUCTION

Destruction and fragmentation of natural areas are
now becoming a worldwide concern. As the remaining
natural areas become smaller and more fragmented, it
is increasingly important to manage them wisely (Soulé
and Wilcox 1980). Ecological systems are inherently
dynamic and change over a variety of spatial and tem-
poral scales. Therefore, planning and management
must be based on predictions of future dynamics, rather
than on detailed descriptions of current states (Western
et al. 1989). Spatially explicit dynamic models are use-
ful tools for decision-making processes (Boumans and
Sklar 1990, Turner et al. 1995). Currently, most spa-
tially explicit, dynamic models for land management
have been developed for one or a few species (Turner
et al. 1995). Extrapolating from such models to ‘‘bio-
diversity’’ is problematic. In the absence of models for
each species of interest, the development of spatial
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models of vegetation changes could assist managers
seeking to maintain biodiversity (Turner et al. 1995).

Both mechanistic and empirical approaches are
widely used in modeling vegetation dynamics. The
mechanistic approach assumes that the factors under-
lying the process are known, and explicit functions are
used to connect these independent factors with the
modeled variable (Levin 1997). Prevailing in this cat-
egory are the individual-based forest simulators (for a
short review, see Holt et al. 1995). Recent models of
this kind are spatially explicit (Acevedo et al. 1995,
Pacala et al. 1996). In empirical models, future changes
in vegetation are extrapolations of past changes. In a
pure empirical model, no ecological assumptions are
built into the modeling processes, which are based on
observations only. Transition models (also called Mar-
kov models, reviewed by Usher 1992) are the most
common empirical models of vegetation dynamics, and
are often used to predict expected future vegetation
(e.g., Hall et al. 1991, Scanlan and Archer 1991, Cal-
laway and Davis 1993). Transition models are not spa-
tial, and even when based on spatially explicit data
(e.g., vegetation maps; Hall et al. 1991), typically pre-
dict only the regional totals for each class of vegetation
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(but see Wu et al. [1997] for a spatially explicit version
of a transition model).

The goal of the present study is to develop and eval-
uate a modeling approach for predicting vegetation dy-
namics that may serve as a tool for planning and man-
agement. Present vegetation in any location is modeled
as a function of past vegetation and site factors (such
as topography and various disturbances); future veg-
etation pattern is then modeled as a function of current
vegetation and site factors. This is basically an empir-
ical model, but unlike transition models, in which
change is randomly driven, here specific environmental
factors drive vegetation change and ecological consid-
erations determine the choice of the relevant factors
for the model.

Specifically, we discuss the following aspects of this
modeling approach: (1) a comparison between alter-
native models and model realizations; (2) spatial au-
tocorrelation in such spatiotemporal models; (3) indi-
ces for performance of a spatially explicit model; and
(4) merits and limitations of this approach in the con-
text of tools for planning and management.

Logistic and linear models, stochastic and
deterministic realizations

Logistic regression is often used to predict proba-
bilities for presence/absence of a specific vegetation
type (or species) in each point (e.g., Toner and Keddy
1997). A vegetation map may be constructed using a
realization of these probabilities. When more than two
vegetation types are mapped, polychotomous logistic
regression (Hosmer and Lemeshow 1989) may be used
to predict the respective probabilities (Davis and Goetz
1990). Often, however, the raw data consist of the pro-
portion of cover of different vegetation types in each
cell. In this case, a reduction of the data into few veg-
etation categories is needed before logistic regression
can be used. This involves a loss of information. An
alternative approach is a linear model, in which the
proportion of cover in each cell is the dependent var-
iable. In this study, we compare these two modeling
approaches in terms of statistical adequacy and fore-
casting performance.

To create a predicted vegetation map based on such
models, two types of realizations can be used (Buck-
land and Elston 1993). In a deterministic realization,
the predicted value for a given cell is determined on
the basis of the regression coefficients (in a linear mod-
el), or by assigning the cell to the class of its highest
probability (in a logistic model). In a stochastic real-
ization, a value is drawn randomly using the multi-
nomial probabilities from the logistic model to deter-
mine a cell’s status. Stochastic realization can be ap-
plied to a linear regression model as well, but the lo-
gistic model is more appropriate to represent a
stochastic process with discrete states (Buckland and
Elston 1993). In the present study, only deterministic
realizations were considered for the linear model.

METHODS

Study area

An area of 4 km2 (400 ha) on the northern slopes of
Mt. Meron, Upper Galilee Mountains, Israel (328 N,
358 E) was chosen for the study. The area is hetero-
geneous in terms of topography (Fig. 1) and the mixture
of vegetation types, but homogenous in its bedrock
conditions (brown rendzina on dolomite rocks; O.
Salmon, personal communication). The dominant tree,
shrub, and dwarf shrub species are Quercus calliprinos,
Calicotome villosa, and Sarcopoterium spinosum, re-
spectively. The entire area was subject to intensive
grazing and tree harvesting until 1948, when the nearby
Arab village Sasa was abandoned. These practices have
been largely reduced since then, and a rapid process
of vegetation recovery is taking place in the region.
Starting in the early 1960s, different parts of the area
experienced different grazing regimes, in terms of both
the type of livestock (goats vs. cattle), and grazing
intensity. These regimes were kept relatively constant
from 1964 to the present. The regional water divide
bissects the study area into two distinct units, belonging
to different drainage basins. The eastern unit (65% of
the study area) was allocated to the construction of the
models and the western unit (35% of the study area)
served as a validation area. The western unit had no
plots with cattle; therefore, an adjacent cattle-grazing
plot was added to the validation area. These two units
are shown in Fig. 1.

Vegetation maps

The methods used to produce vegetation maps from
pan-chromatic aerial photographs are described in de-
tail by Carmel and Kadmon (1998). The main steps of
the procedure are described here briefly. Two aerial
photographs of the study area (1964 and 1992) were
chosen as a basis for the analysis. Diapositives of the
photos were scanned, ortho-rectified, and geo-refer-
enced to a planimetric coordinate system. Spatial res-
olution (pixel size) in both photomaps was 0.3 m. The
combined RMS (root-mean-square) positional error be-
tween the photomaps was 1.13 m. The vegetation was
classified based on its height: woody vegetation . 2.5
m (‘‘trees’’); woody vegetation , 2.5 m, including
shrubs, semi-shrubs, and low trees (‘‘shrubs’’); and her-
baceous vegetation, including bare ground (‘‘herbs’’).
Classification accuracy was 89% in the 1992 image and
82% in the 1964 image (Carmel and Kadmon 1998).
Anthropogenic elements (settlements, agricultural ar-
eas, etc.) were manually digitized on the photos and
excluded from further analyses.

The vegetation maps were in raster format, i.e., con-
sisting of grid cells. Accurate assessment of vegetation
changes requires that comparisons of vegetation in dif-
ferent points in time are made between grid cells that
actually represent the same area (Townshend et al.
1992). Using a cell size of 15 3 15 m, we achieved a
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FIG. 1. A map of the study area, showing the topography and the distribution of grazing regimes (modified from Carmel
and Kadmon [1999]). Contour intervals represent 10 m in elevation. Shaded portions are agricultural areas or villages. Circled
numbers are the locations of (1) Kibbutz Sasa and (2) Mt. Meron field study center. The double line separates the model
area (east) and validation area (west).

minimum spatial overlap of 90% between identical grid
cells in 1964 and 1992 maps. The proportion of cover
of each vegetation type (trees, shrubs, and herbs) in
each grid cell was calculated based on the vegetation
maps with the 0.3-m resolution. All other digital maps
in the database were rescaled to the same resolution.

Disturbance and topography maps

The major disturbance factors in this area (grazing,
logging, and fire) were documented, and maps of their
intensities across the study area were produced. This
part is described in detail in Carmel and Kadmon
(1999), and is briefly reviewed here. The study area
consists of areas grazed by cattle and areas grazed by
goats. Fences divide those areas into plots of three
distinct grazing intensities for cattle (high, moderate,
and low), two levels of goat grazing (moderate and
low), and a plot that was not grazed at all. A single
low-intensity fire occurred in the area during the period
studied, in 1978. The spatial range of the fire was de-
limited on an aerial photo taken several weeks after the
fire. A single logging event occurred in 1980, and the
range of that event was also delimited.

A digital terrain model (DTM, which denotes the
elevation at each point in the area) was produced in
the photo-rectification process, (Fig. 1 illustrates its
contour representation). This DTM was used to derive
digital maps of elevation, slope, and aspect for the
study area. Aspect is represented by angular data (0–
3608), and it was decomposed to north–south and east–
west linear components (Periera and Itami 1991).

The models

Two types of multiple regression models were con-
structed: a linear regression model and a polychoto-
mous logistic regression model. Each of these models
was constructed twice, using the whole data set and
using a small sample. The SPSS package (SPSS 1993)
and the SAS package, procedure CATMOD (SAS In-
stitute 1990), were used for building the linear regres-
sion and the polychotomous logistic regression, re-
spectively.

Dependent variables

In the linear model, 1992 cell-specific tree cover
(TREE92) and cell-specific herbaceous cover (HERB92)
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TABLE 1. List of potential predictors for the regression
models.

Variable, by group Description

1964 vegetation for linear models
TREE64

SHRUB64

HERB64

Proportion of trees in a grid cell in
1964

Proportion of shrubs in a grid cell
in 1964

Proportion of herbs in a grid cell
in 1964

1964 vegetation for logistic models
VEGET64 Cell-specific dominant vegetation

type in 1964.

Neighbor indices for 1964 vegetation
NEIBORHERB64

NEIBORSHRUB64

NEIBORTREE64

Index of 1964 herbaceous cover in
the cell’s neighborhood

Index of 1964 shrub cover in the
cell’s neighborhood

Index of 1964 tree cover in the
cell’s neighborhood

Topography variables
ASPECT-NS

ASPECT-EW

SLOPE
Z

North–south linear component of
aspect angle, in 08–1808 scale,
where N 5 08, S 5 1808, and
E 5 W

East–west linear component of as-
pect angle, in 908–2708 scale,
where E 5 908, W 5 2708, and
N 5 S

Slope inclination
Elevation in meters above sea

level

Disturbance indices
LOWCATTLE

MODCATTLE
HIGHCATTLE
LOWGOAT
MODGOAT
FIRE
LOGGING

Value 5 1 for cells in areas with
low cattle grazing regime; 0 for
all other cells

1, moderate cattle grazing; 0, other
1, high cattle grazing; 0, other
1, low goats grazing; 0, other
1, moderate goats grazing; 0, other
1, inside the range of fire; 0, other
1, inside the range of logging; 0,

other

were the dependent variables. The third component,
1992 shrub cover, was calculated as 1 2 (TREE92 1
HERB92). Linear regression assumptions maintain that
the error terms are independent, have zero mean and
constant variance, and follow a normal distribution.
When the dependent variable Y is a proportion, as in
our case, the error variance is not constant but pro-
portional to E(Y ){1 2 E(Y )}, where E(Y ) is the ex-
pected value of the dependent variable Y. We followed
a common remedy in this case, and used the transfor-
mation arcsine to stabilize the error variance (Weis-ÏY
berg 1985). Plots of the studentized residuals against
predictions and against predictors confirmed compli-
ance with model assumptions.

For the polychotomous logistic regression, the veg-
etation data were reduced: each cell was assigned its
dominant vegetation type (the one with the largest cov-
er). The dependent variable was the 1992 vegetation
category.

Independent variables

In this study, an attempt was made to construct a
model that would be general, and applicable to other
mediterranean regions. Thus, only variables that are
known to causally affect mediterranean vegetation
were included as potential predictors. These predictors
were classified into three groups (Table 1): character-
istics of 1964 vegetation, topography variables, and
disturbance characteristics (grazing, logging, and fire).

Vegetation change in a specific cell may be affected
by initial vegetation in neighboring cells (for example,
cells with no woody vegetation in their neighborhood
may show little change in woody vegetation, compared
to cells surrounded by woody vegetation). Therefore,
the first group, 1964 vegetation characteristics, includ-
ed variables describing the vegetation in each cell, as
well as indices for 1964 vegetation in neighboring cells
(Table 1). Preliminary analysis (using univariate re-
gression) revealed that indices based on the nearest four
neighbors were the only ones that had a detectable
effect on 1992 vegetation pattern (as opposed to indices
based on a larger neighborhood size). Three such in-
dices (for trees, shrubs, and herbs) were calculated for
each model. In the linear models, these terms were the
mean of cover proportions of the respective vegetation
type in the four nearest neighbors; in the logistic mod-
els, these terms were the sum of cells dominated by
the respective vegetation type.

Dummy variables were created to represent the cat-
egorical indices for disturbance (for example, the var-
iable LOWCATTLE was assigned the value 1 for cells
in plots with low-intensity cattle grazing and 0 in all
other cells). Environmental variables may be related to
vegetation nonlinearly. Hence, the square of each var-
iable, as well as the variable itself, was considered for
inclusion in the models (Gates et al. 1994). Because
interactions between topography components were ex-
pected (Brown 1994), all first-order interactions be-

tween topography variables were included as potential
predictors.

Predictors were chosen using a forward stepwise pro-
cedure, with p(in) 5 0.05 and p(out) 5 0.1. In order
to compare all models (logistic/linear, all data/sample)
on an equal basis, we constructed them using the same
set of potential predictors. Exceptions to this rule were
1964 vegetation variables, which were entered as pro-
portion of cover in the linear models and as the cell’s
dominant category in the logistic models.

Constructing a sample database

Spatial autocorrelation is a general statistical prop-
erty of variables measured across geographic space. It
presents a problem for statistical analysis because au-
tocorrelated data violate the assumption of indepen-
dence made in most common statistical procedures
(Cliff and Ord 1981). A commonly used solution to
this problem is to select only a subset of the data, thus
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reducing the extent of autocorrelation (Periera and Ita-
mi 1991, Buckland and Elston 1993, Brown 1994,
Gates et al. 1994). Such a solution involves a massive
loss of information (Legendre 1993). Here, we consider
the question of how much we lose in model perfor-
mance, using only a small fraction of the data instead
of the whole database. Looking at this issue from a
different aspect, one may ask how much one gains by
mapping the whole area, as opposed to sampling at
specific locations.

In order to compare the performance of a model
based on the complete database with that of a model
based on a sample of the data, we looked for a sample
in which spatial autocorrelation was negligible. Prelim-
inary analyses of the residuals of the linear model in-
dicated that for distances of five cells (75 m) and more,
the spatial autocorrelation was below 0.1. To obtain a
sample of the data, we therefore employed a systematic
sampling scheme, and selected every fifth cell in both
row and column directions. This resulted in a sample
size of ;4% of the data (n 5 547). This subsample
was used to construct linear and logistic models, similar
to those based on the complete data set.

The error independence assumption was inspected
via maps of the residuals. Moran’s coefficient was used
to measure the degree of spatial autocorrelation in the
continuous variables (Cressie 1991). It was calculated
for the original vegetation maps and for maps of model
residuals.

Model realizations

Predicted vegetation maps for 1992 were constructed
for the different models, indicating the dominant veg-
etation type for each grid cell. Maps were produced for
the area that served to calibrate the model (‘‘model
area’’) and for the external area allocated for model
validation (‘‘validation area’’). In the linear models,
proportion cover of trees and herbaceous vegetation
for each grid cell were determined based on the re-
spective regression coefficients. The shrub cover was
calculated as the remaining proportion. Each cell was
then assigned its dominant vegetation type. We name
this type of realization ‘‘deterministic,’’ to indicate that
once the proportion is estimated, the respective reali-
zation is determined.

In the polychotomous logistic models, the cell-spe-
cific probabilities associated with each vegetation type
were used to construct two types of realizations. In the
first type, a number in the interval [0,1] was drawn at
random and was compared to the probabilities derived
from logistic model for each class (p1, p2, and p3, are
the probabilities for trees, shrubs and herbs, respec-
tively). If a number between zero and p1 was drawn,
then category 1 (trees) was assigned to this cell. If the
random number was in the interval [p1, p1 1 p2], then
category 2 (shrubs) was assigned to the cell. Category
3 (herbaceous vegetation) was assigned if the random
number exceeded [p1 1 p2]. We refer to this type as

‘‘stochastic realization.’’ In the second type, a deter-
ministic realization, the highest probability determined
the cell type.

Model performance

Model performance was evaluated independently for
the model area and for the validation area, using the
following measures.

1) Overall vegetation composition: proportions of
each vegetation type in the relevant area were calcu-
lated and compared to the actual proportions.

2) Vegetation pattern: patterns in the predicted maps
were assessed using three indices, the number of patch-
es, the average patch size, and the contagion index (Li
and Reynolds 1993). The latter index measures the ex-
tent to which the vegetation types are clumped or ag-
gregated (Turner et al. 1989).

3) Cell-by-cell match: each predicted vegetation map
was compared with the actual map on a cell-by-cell
basis.

An error matrix was created for each comparison,
and the significance of the k coefficient of agreement,
which controls for the match expected by chance alone
(Cohen 1960), was tested. To test for the differences
between predictive accuracy of alternative models, we
applied McNemar’s test (Fleiss 1981) a two-by-two ta-
ble of correctly vs. incorrectly predicted cells. Because
these tests require independence between observations,
we applied them to a systematic subsample of the data.
This subsample was constructed using the same method
previously described.

Model applicability for planning and management

We illustrate the potential of the model in relation
to an actual management problem. The Israeli Nature
Reserve Authority plans to proclaim this area as part
of the adjacent Mt. Meron Nature Reserve, and to pro-
hibit grazing in the whole area. The implications of
excluding grazing from the area were examined by cre-
ating two predicted vegetation maps for the year 2020,
one under the scenario of no grazing in the whole area,
and the other under the scenario of ‘‘Status Quo,’’ i.e.,
no change in grazing regimes across the study area.
Model limitations and implicit assumptions will be dis-
cussed.

RESULTS

Regression models

Table 2 summarizes the results of model building for
the linear models of (a) tree and (b) herbaceous cover,
respectively. Similar sets of predictors were found to
be significant for the logistic models. Initial vegetation,
topography, and the ‘‘disturbances’’ (fire, logging, and
grazing) all had significant impacts on present vege-
tation cover. These factors together explained 54% and
76% of the observed variability in herbaceous cover
and tree cover, respectively, in the linear model based
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TABLE 2. Regression results for the linear models for
(a) tree cover and (b) herbaceous cover.

Variable, by group

B†

Model
based on

subsample
(n 5 547)

Model
based on
all data

(n 5 13 855)

a) Models for tree cover
Constant 1.127*** 0.954***

1964 vegetation
HERB64
(HERB64)2

20.457**
20.388**

20.264***
20.462***

Topography variables
ASPECT-NS
ASPECT-EW
SLOPE
ASPECT-NS 3 SLOPE

NS

0.003***
1.062**

20.011**

0.001*
0.002***
1.205***

20.012***
Disturbance indices

MODCATTLE
HIGHCATTLE
LOWGOAT
MODGOAT
FIRE
LOGGING

20.502*
20.496*

NS

20.483*
NS

20.357***

20.348***
20.395***
20.293***
20.371***
20.055***
20.334***

b) Models for herbaceous cover
Constant 0.373* 0.430***

1964 vegetation
HERB64
(HERB64)2

NS

0.506**
0.013*
0.514***

Topography variables
ASPECT-NS
ASPECT-EW
SLOPE
ASPECT-NS 3 SLOPE

0.0015*
20.0015***

NS

20.0034*

0.004***
20.0015***
20.582***
20.022**

Disturbance indices
MODCATTLE
HIGHCATTLE
LOWGOAT
MODGOAT

0.066*
NS

NS

0.302*

0.078***
0.161***
0.183***
0.226***

* P , 0.05; **P , 0.01; ***P , 0.001; NS, not significant.
† B is the unstandardized regression coefficient, which de-

notes the impact of each specific variable on the slope of the
regression line.

FIG. 2. Residuals of the linear models predicting the pro-
portion of cover of (a) trees and (b) herbaceous vegetation
in each grid cell.

on the complete database. Grazing by both cattle and
goats inhibited the expansion of trees and reduced the
rate of herbaceous withdrawal. Logging and fire af-
fected tree cover negatively, whereas herbaceous cover
was not significantly affected by these factors. Tree
cover increased and herbaceous cover decreased with
increasing slope. Tree cover increased, whereas her-
baceous cover decreased from south- to north-facing
slopes, and from east- to west-facing slopes. The in-
teraction terms between the north–south component of
aspect angle and slope inclination were also significant.
Effects of all neighborhood indices of 1964 vegetation
on 1992 vegetation were nonsignificant. In general, the
regression coefficients of the subsample-based models
were not very different from those of the all-data based
models (see Table 2 for the linear model).

Spatial autocorrelation in the actual vegetation maps
was high, with Moran’s coefficient being 0.77 and 0.85

for maps of the 1992 herbaceous and tree cover, re-
spectively. The values for the linear model residuals
for herbaceous and tree cover were reduced to 0.57 and
0.58, respectively (P , 0.05 in all cases). Some patch-
iness of model residuals was evident in the models (Fig.
2).

Model predictions

All predicted maps had a significantly better match
to the actual vegetation map then expected by chance,
for both the model area and the validation area (k was
significant at the P , 0.01 level in all cases). The
general patterns of the actual vegetation map of the
model area are well depicted by the model maps, yet
there are some important differences between the mod-
els (Fig. 3), which are documented in the following
subsections.

Complete vs. sample data sets

In general, the use of 4% of the data yielded results
very similar to those obtained using the whole data set.
Cell-by-cell match between model maps derived from
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FIG. 3. Actual and model prediction maps: (a) actual 1964 vegetation map, which was the model input; (b) actual 1992
vegetation map; (c) linear model map; (d) logistic model, stochastic realization; (e) logistic model deterministic realization.
The double line separates the model area (east) and validation area (west).
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FIG. 4. Match between actual and predicted vegetation
maps on a cell-by-cell basis. Abbreviations are: LIN, linear
model; LD, logistic model, deterministic realization; and LS,
logistic model, stochastic realization. Open markers represent
models based on the sample data set, and solid markers rep-
resent models based on the complete data set. Squares rep-
resent results for the model area, and diamonds represent
results for the validation area.

TABLE 3. Actual and predicted proportions of trees, shrubs,
and herbaceous vegetation in 1992, in (a) the model area
and (b) the validation area. Predicted proportions were cal-
culated from the respective model realizations.

Vegeta-
tion type

Actual
vegetation

map

Models

Linear

Logistic,
deter-

ministic
Logistic,
stochastic

a) Model area
Trees
Shrubs
Herbs

0.51
0.32
0.17

0.46
0.33
0.21

0.44
0.41
0.15

0.50
0.33
0.16

b) Validation area
Trees
Shrubs
Herbs

0.45
0.41
0.14

0.42
0.39
0.19

0.42
0.35
0.23

0.35
0.33
0.31

FIG. 5. Landscape pattern indices calculated for the actual
1992 vegetation map and for 1992 model maps, for the model
area: (a) contagion; (b) total number of patches; (c) mean
patch size. Abbreviations are: VM, actual vegetation map
(square); LIN, linear model; LD, logistic model, deterministic
realization; and LS, logistic model, stochastic realization. A
very similar trend was found for the validation area (not pre-
sented).

the whole data and their subsample-based counterparts
was between 0.92 and 0.96 in all cases. The match
between model maps and actual vegetation maps was
slightly higher in the all-data based models than in the
subsample-based models in most cases (Fig. 4), but
these differences were not significant (McNemar’s test,
P . 0.05). In the following sections, we present the
results for the models based on the complete data, given
that results for their subsample-based counterparts are
similar.

Stochastic vs. deterministic realizations

Vegetation composition.—The stochastic realization
of the polychotomous logistic model predicted vege-
tation composition in the model area rather precisely
(with differences of 1% between actual composition
and model estimation; Table 3), which is a natural out-
come of its statistical properties. Vegetation compo-
sition was predicted less successfully by the determin-
istic realizations of both the logistic and the linear mod-
els (with differences of 2–8%; Table 3).

Spatial patterns.—The stochastic realizations were
consistently more fragmented than the actual ones,
whereas the deterministic realizations were more
clumped than the actual ones (Figs. 3 and 5).

Cell-by-cell match.—The match between model and
actual maps was significantly higher in the determin-
istic realizations of both the logistic and linear models
than in the stochastic realizations of the logistic model
(McNemar’s test, P , 0.05 for all comparisons; see
also Fig. 4). The slight differences between the deter-
ministic realizations of the logistic and linear models
were not significant (McNemar’s test, P . 0.05).
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FIG. 6. Predicted vegetation maps for 2020. Maps were constructed using the linear model, based on the actual 1992
vegetation map and regression coefficients. Two scenarios were considered: (a) grazing regimes would be the same as in the
last 30 yr across the study area, and (b) both goats and cattle grazing would be halted in the whole area. Both scenarios
assume that no other disturbance (e.g., fire, logging) occurs in the area during the period 1992–2020.

TABLE 4. Proportions of vegetation types in 2020 in the
whole study area, predicted by different models, for
(a) continuation of grazing under the same regimes across
the study area, and (b) no grazing at all in study area.

Vegetation
type

Predicted proportions (2020)

LIN LD LS

Actual
proportions

(1992)

a) Grazing in study area
Trees
Shrubs
Herbs

0.74
0.08
0.18

0.79
0.06
0.15

0.68
0.15
0.16

0.49
0.34
0.16

b) No grazing in study area
Trees
Shrubs
Herbs

0.86
0.02
0.12

0.96
0.001
0.04

0.90
0.05
0.06

0.49
0.34
0.16

Notes: Abbreviations are: LIN, linear model; LD, logistic
model, deterministic realization; and LS, logistic model, sto-
chastic realization. Actual proportions in 1992 are also pre-
sented.

Performance in model area and validation area

Vegetation composition.—The stochastic realization
was considerably less accurate in predicting vegetation
composition in the external validation area, compared
to its performance in the study area (Table 3). In con-
trast, predictions of vegetation composition in deter-
ministic realizations of both model types were not less
accurate for the validation area than for the model area
(Table 3).

Spatial pattern.—There were no differences in pre-
diction quality between the model and the validation
areas.

Cell-by-cell match.—The match between model and
actual maps was significantly lower for the validation
area than for the model area (McNemar’s test, P , 0.01

for all comparisons). Extrapolating the models to fit an
external area reduced their match by 19–21% (Fig. 4).

Model applicability for planning and management

Predicted vegetation maps for 2020 were created
based on (1) a scenario of no change in grazing regime
across the study area, and (2) a scenario of no grazing
in the whole area. Both scenarios assumed no fire and
no logging in the area during the period 1992–2020.
Predicted maps resulting from the deterministic reali-
zation of the logistic model are portrayed in Fig. 6.
Predicted vegetation composition under all three re-
alizations is presented in Table 4. The predicted veg-
etation maps for these two scenarios show that a further
increase in tree cover in the area is expected, even if
grazing continues (Fig. 6). If grazing is eliminated from
the area, trees are predicted to dominate the whole
study area, whereas shrubs and herbaceous vegetation
are expected to disappear almost entirely (Fig. 6, Table
4). Remaining patches of these two vegetation types
are predicted to be small and isolated. Note that this
major prediction is consistent in all realizations, in spite
of some differences between them (Table 4). Under the
‘‘status quo’’ scenario, trees are predicted to cover 68–
79% of the area; under the ‘‘no grazing’’ scenario, trees
are projected to cover 86–96% of the area.

DISCUSSION

Prediction is a principal means of testing fit between
theory and observed phenomena (Pickett and Kolasa
1989). However, another important aspect of prediction
is its use for planning and management (Glenn-Lewin
et al. 1992). The variety of models for vegetation dy-
namics is large, and there is no one ‘‘best modelling
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approach’’ (Urban and Shugart 1992). The pros and
cons of each modeling approach should be considered
in the context of its purpose. In the context of fore-
casting, both empirical and mechanistic approaches
have been criticized (for a short review, see Koehl
1989).

Van Tongeren (1995) argues that when general mech-
anistic ecosystem models are used to predict specific
situations, the probability for a good prediction is low.
Some individual-based mechanistic models have had
good fit between model predictions and independent
validation data (e.g., Pacala et al. 1996). Yet, in order
to achieve accurate mechanistic models, demographic
parameters have to be calibrated based on field exper-
iments (Pacala et al. 1996). For widespread use in plan-
ning and management, construction of such experi-
ments often may not be feasible. The mechanistic ap-
proach has also been used to construct large-scale sto-
chastic models of vegetation dynamics (Jeltsch et al.
1997, He and Mladenoff 1999). These models empha-
size the general nature of patterns and dynamics pro-
duced at large scales, rather than predictive ability for
specific local situations (He and Mladenoff 1999). Ad-
ditionally, validation of such models against indepen-
dent data often is not feasible (He and Mladenoff 1999).

The use of empirical models for predictive purposes
has also been questioned (Lehman 1986, Higgins and
Richardson 1996). It is argued that, underpinned by
empirical data, these models would only fit the area
upon which they were calibrated (Verbyla and Fisher
1989). Another serious limitation of most empirical
models is that they are not spatially explicit, which is
an important property for a model intended to apply to
land management (Boumans and Sklar 1990).

In the present study, we chose an intermediate ap-
proach to model vegetation dynamics. Unlike common
empirical models, specific environmental and biolog-
ical factors are assumed to have causal roles in the
observed dynamics, and are used to drive the changes
in the model. Unlike mechanistic models, these causal
relationship are not expressed as a set of specific func-
tions, but are calculated directly from the available
data. Multiple regression is used to identify and quan-
tify effects of environmental factors on vegetation
change in past decades. Present vegetation in any lo-
cation is modeled as a function of past vegetation and
the effects of environmental factors (i.e., site factors
such as topography and disturbances); future vegeta-
tion pattern is then modeled as a function of current
vegetation and effects of environmental factors. We
believe that this approach integrates some of the ad-
vantages of mechanistic models (namely, the explicit
use of causal factors renders generality in the model)
and empirical models (simplicity, precision, and real-
ism). Additionally, it is particularly suitable to accom-
modate imagery-derived data, which become ever more
available and affordable.

Recent models of vegetation dynamics (Wu et al.

1997) and land-use change (Wear and Bolstad 1998)
used a similar approach. Wu et al. (1997) developed a
spatially explicit version of a transition model for veg-
etation dynamics between cattail and sawgrass in Flor-
ida wetlands. The probability that a grid cell would
change into a specific vegetation type is the weighted
sum of probabilities associated with its specific envi-
ronmental characteristics. That model has three char-
acteristics in common with the models of the present
study: aerial photographs are the source of data, it
achieves a fine resolution (20 3 20 m grid cell), and
it has the capability of creating predicted future veg-
etation maps for use in planning and management. Wear
and Bolstad (1998) developed an approach for mod-
eling land-use change that makes use of a multiple
regression in which economical, as well as environ-
mental, factors are explanatory variables. The model
is calibrated using remote-sensing data, and is capable
of forecasting land-use maps.

Several issues associated with the approach pre-
sented here, and its various possible versions, will be
discussed, followed by an evaluation of this approach
in the context of planning and management. Carmel
and Kadmon (1999) provide a discussion of the eco-
logical factors that were found to drive vegetation dy-
namics in this mediterranean ecosystem.

Linear vs. logistic models

The input of the linear model was the proportion of
cover of each vegetation type in a 15 3 15 m grid cell,
which consisted of 2500 pixels of 30 3 30 cm in the
original vegetation map. In the logistic model, this in-
formation was reduced to a single value for each grid
cell, its dominant vegetation type. In spite of this re-
duction, performance of the logistic models was similar
to that of their linear counterparts. This result may be
explained by a trade-off between model adequacy and
loss of information. The underlying assumptions in the
linear model, such as variance homogeneity, were not
completely satisfied. The logistic model, in contrast,
was fully adequate for probability predictions, but used
reduced data.

Deterministic vs. stochastic realizations

In a previous study, stochastic realizations of a lo-
gistic model outperformed deterministic realizations of
the same model in predicting the general pattern of
deer distribution in Scotland (Buckland and Elston
1993). In the present study, in which models were as-
sessed using three different aspects of performance,
determining which realization was better depended on
the aspect of performance considered. The stochastic
realizations performed better than the deterministic
ones in predicting the vegetation composition in the
model area, but this trend was reversed in the external
validation area. Deterministic realizations outper-
formed their stochastic counterparts in matching the
actual map. Both the stochastic and deterministic re-
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alizations failed to predict spatial patterns accurately;
the stochastic realizations were more fragmented than
the actual ones, whereas the deterministic realizations
were more clumped than the actual ones. One possible
conclusion is that both types should be constructed to
bracket the actual range of pattern. The actual vege-
tation is expected to be less fragmented than the sto-
chastic realization and more fragmented than the de-
terministic realization.

Statistical considerations

The parameter estimates of the subsample-based
models are only slightly different from those of the all-
data-based models. When these estimates are used to
reconstruct a map for the entire area, the result is very
similar to that of the all-data-based map. This indicates
that, for a proper sample size (in this case, n 5 547),
the additional information gained by mapping the
whole area results in a negligible improvement in mod-
el performance.

Maps of residuals of the models suggested that model
errors were patchily distributed in space, probably
pointing to latent environmental factors such as small-
scale differences in soil type and local differences in
grazing intensity that were not accounted for by the
grazing plots. The fact that there are missing variables
in the model reduces its performance; yet this should
not prevent us from using it (cautiously) for predictive
purposes.

An alternative approach to the problem of spatial
autocorrelation is to accommodate it into the model
(Legendre 1993). For example, Augustin et al. (1998)
used values of the response variable at neighboring
cells (autocovariates), in addition to environmental var-
iables, as predictors in a spatial model, and found this
to significantly improve model predictions. However,
this approach is not applicable in the case of spatio-
temporal models of the type presented here because
they are typically calculated from the actual map,
which is, in the case of a spatiotemporal dynamic mod-
el, the future map to be predicted (Cliff and Ord 1981).
Investigating the consequences of ignoring spatial
structure for the performance of the models, we com-
pared our predictive model (in which spatial autocor-
relation is ignored) with a similar model that incor-
porates spatial structure in the form of autocovariates
(Y. Carmel, R. Kadmon, and R. Nirel, unpublished
data). It was found that a considerable improvement
in model performance was gained when autocovariates
were included in the model. A possible direction for
future effort to integrate spatial autocorrelation into
spatiotemporal models may include iterative simula-
tions of expected spatial structure, similar to those ap-
plied in predicting current distribution of species (Au-
gustin et al. 1998).

Indices of 1964 neighbor vegetation were nonsig-
nificant in all regression models. This may be a result
of the specific structure of 1964 vegetation. At a res-

olution of 15 m, vegetation in the cell’s neighborhood
was generally similar to vegetation in the cell itself,
and thus provided no additional information.

Using the model for extrapolations

Measuring model performance in an external area is
a strict test for its generality. Often, models that fit well
to the sites on which they are based fail to predict
external sites (Verbyla and Fisher 1989, Buckland and
Elston 1993). For example, Mcquilkin (1976) reported
a vegetation model with R2 of 0.66 that dropped to 0.01
when tested against independent data. In the present
study, the model and validation areas, although adja-
cent, are distinct units. For the most part, they belong
to different drainage basins. They are characterized by
different combinations of slope and aspect, and are
grazed by different goat herds. Taking these differences
into account, a reduction in model performance when
predictions were made for the external area was ex-
pected. However, the general vegetation pattern in the
validation area was still well depicted by the model
maps. Cell-by-cell match between model maps and the
actual map was significantly reduced when models
were applied to the validation area; in contrast, the
quality of predictions of pattern indices and vegetation
composition was similar to that of the model area (ex-
cept the stochastic prediction for vegetation composi-
tion).

Model applicability for planning and management

The potential of such models to relate to actual man-
agement decisions is exemplified, for the case of graz-
ing, in Mt. Meron Nature Reserve. Our results predict
that exclusion of grazing from the study area (as
planned by the Israel Nature Reserve Authority) would
result in trees becoming the sole vegetation type, while
shrubs and herbaceous vegetation would almost dis-
appear by the year 2020. Remaining patches of these
vegetation types would be small and isolated. Thus, the
exclusion of grazing would decrease variability in veg-
etation types, and the entire biota dependent on the
shrubs and herbaceous vegetation would be eliminated.
Successional processes similar to those described here
are occurring across the Galilee mountains and in other
parts of the mediterranean region of Israel (Samocha
et al. 1980, Kadmon and Harari-Kremer 1999a). Thus,
in the long term, the proposed exclusion of grazing
would result in loss of biodiversity. In contrast, the
continuation of grazing may serve as a means of man-
agement that may decelerate these processes and may
help to conserve landscape heterogeneity and biodi-
versity.

Model predictions assume that the rate of vegetation
change is constant. This assumption is conditioned
upon several factors. (1) No other disturbances (fire,
logging, etc.), would occur in the study area in the next
28 yr. This may be an unrealistic assumption. However,
the model framework could be adjusted to include dis-
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turbances of the sort that took place in the area during
the period studied, in the same way that grazing was
altered in the previously mentioned scenarios. (2) No
anthropogenic land-use change would occur in the
study area. This, too, is an unlikely scenario for the
mediterranean region. Yet, hypothetical or planned
land-use change could be accounted for by the model
by simply altering the scenario of land use in the sim-
ulation input. (3) No climate change would occur in
the study area in the next 28 yr. This assumption may
not hold, given our current knowledge about global and
local climate shifts. If the model is calibrated for other
mediterranean sites with different climatic conditions,
as previously suggested, it would be possible to run
sensitivity analyses for scenarios of climate shifts.

Turner et al. (1995) mention some properties for a
spatially explicit model aiming to aid land management
decision making. Although they refer specifically to
population models, we believe that this list is relevant
for models of vegetation dynamics as well. The mod-
eling approach presented here seems to match each one
of the characteristics mentioned by Turner et al. (1995).
(1) The model should operate on spatial and temporal
scales relevant to management decisions. Vegetation
maps based on aerial photographs can cover a range
of 1–100 km2 (Kuechler and Zonneveld 1988) and span
4–5 decades (Carmel and Kadmon 1998). These di-
mensions correspond to many actual management ques-
tions (Turner et al. 1995). (2) Measurement of input
variables should be affordable. Black and white aerial
photographs have been available (and affordable) for
the last 50–60 yr for many parts of the world (Kadmon
and Harari-Kremer 1999b). Measurement of other var-
iables is also relatively simple, although detailed data
for disturbance history may not always exist. (3) Ef-
fects of alternative management scenarios may be fore-
seen. The approach presented here is particularly ame-
nable for such ‘‘scenario-analysis.’’ (4) The visuali-
zation of spatially explicit model outputs may be very
useful for managers. Fig. 6 is a good example of this
point.

Considering the merits and limitations of the mod-
eling approach presented here, we believe that it may
serve as a valuable tool for planning and management.
Management programs based on expected vegetation
dynamics would be more realistic than those based on
current vegetation maps. The approach presented here
offers a step forward in this direction.
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