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Abstract

Spatial mapping of variables that vary in space and time is a common procedure in many research fields. Very often it

is of interest to map the time-average or time-integration of the variable over the whole period of interest. Normally,

such a map is produced by spatially interpolating the whole period averages of the observed data. An alternative option

is to first spatially interpolate narrow time slice averages of the variable and then sum the resultant maps. This paper

discusses the latter option, and the accuracy of the spatio-temporal variable interpolation as a function of the width of

the time-averaging window. Theoretically, using a linear and data-value independent operator to interpolate a complete

data set (i.e. without missing data), the accuracy is independent of the width of the time-averaging window. However,

using a nonlinear or a data-value dependent interpolation operator, and/or in the presence of missing data, the accuracy

of the interpolation can vary with the averaging window width. The concept is demonstrated using a set of half-hourly

SO2 concentrations measured at 20 monitoring stations in Haifa Bay area, Israel, during the years 1996–2002. Cross-

validated interpolation accuracy measures calculated for this data set vary significantly with the time-averaging window

width, showing a clear minimum at daily averaging. The results and their general implications for the interpolation of

spatio-temporal variables are discussed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Often, the time-aggregation of spatio-temporal vari-

ables, i.e. their temporal average or time-integration, is

of interest. For example, climatologists are usually

interested in meteorological variables averaged at a time

resolution coarser than a season (Fasullo, 2004; Lucero

and Rodrı́gues, 2004; Sherwood, 2000; Skirvin et al.,

2003) and epidemilogists often look at the exposure to

air pollutants (usually estimated as the time-integration
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of the pollutant concentration) over long periods in the

order of years (Lall et al., 2004; Liblik et al., 2003; Samet

et al., 2000). Since researchers using time-aggregated

data usually feel comfortable with the data’s temporal

resolution, they mainly focus on the interpolation of the

spatially sparse observations to a fine regular grid (De

Cesare et al., 2001). Thus, it is not unusual that spatial

maps of precipitation (e.g. Doggett et al., 2004; Karnieli,

1990) or exposure to air pollution are generated by

spatially interpolating annually, or multi-annual

averages of the observed variables (Nikiforov et al.,

1998; Wong et al., 2004).

An alternative option for mapping time-aggregated

variables is to first compute averages of the data records
d.
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over narrow time slices, interpolate these time slice

averages to full grid maps and then sum, or average, the

maps to obtain the spatial time-integration or time-

averaged maps for the whole period. By the definition of

a linear operator (Weidmann, 1980, p. 50), a linear and

data-value independent interpolation, based on a

complete set of data points, yields the same spatial

map regardless of the width of the time-averaging

window applied to the observed data prior to the

interpolation. However, using a data-value dependent or

a nonlinear interpolation operator, the temporal resolu-

tion of the data to which averaging is applied might

determine the accuracy of the time-aggregated map.

Moreover, almost inevitably, data sets are missing many

data points due to instrumentation failure, scheduled

maintenance, electricity outages, etc. (e.g. Carrol et al.,

1997; Sherwood, 2001). The accuracy of time-aggregated

maps, derived using different averaging window widths,

might be influenced by the way those missing data points

are handled regardless of the method used for carrying

out the interpolation. Sherwood (2000) found large

differences between spatial maps of atmospheric tides

using the narrowest and the widest possible time-

averaging window widths. Jeffrey et al. (2001) discussed

the relative advantages of using daily and monthly data

for spatial interpolation of precipitation in Australia.

Bearing in mind the various time scales on which

environmental phenomena vary, a systematic study of

the effects of time-averaging on the accuracy of the

interpolation maps is required.

Two spatial interpolation methods are considered

here, the inverse distance weighting (IDW) and kriging.

The IDW is a linear interpolation operator (Isaaks and

Srivastava, 1989) which depends only on the fixed

distances between the data collection locations. It is

independent of the actual data values on which it

operates and thus easy to implement in an automatic

manner for the purpose of carrying out the thousands of

sequential interpolations required for this study. The

data-value independency and the pure linearity of IDW

enabled isolating the effects of missing data on the

variation in mapping accuracy from the effects of the

nonlinearity and data-value dependency. The kriging

optimal interpolation (Cressie, 1993; Isaaks and Srivas-

tava, 1989) has long been established in many fields as

the mainstream technique for spatial interpolations

(Goovaerts, 1997). Normally, kriging interpolation is

manually performed by a skilled user who determines

the values of the required input parameters. In our case

however, such an interactive procedure is not a viable

option. Hence, an unsupervised kriging scheme was

developed to carry out the many sequential interpola-

tions in an objective and efficient manner.

Using the IDW and kriging interpolation methods,

this work studies the impact of the temporal resolution

at which time-averaging is applied on the spatial
accuracy of mapping. A data set of half-hourly SO2

concentrations collected at 20 monitoring stations in the

Haifa Bay area during the years 1996–2002 is used for

demonstrations. A full cross-validated procedure tests

the accuracy of the interpolation maps as a function of

the width of the time-averaging window which was used

to produce them. Corresponding full grid maps are

produced to qualitatively visualise the significance of the

variations in the cross-validated accuracy measures. The

implications of the finding for interpolation of other

spatio-temporal variables are discussed. The paper

begins with an exposition of the main theme and the

methodologies used to study it. The SO2 data set is

presented in the next section and is followed by the

results and the discussion sections.
2. Methodology

2.1. Interpolation of time-aggregated data

Consider a variable V ðx; tÞ; where x are the 2D or 3D

spatial coordinates and t is time. For simplicity, in the

following we take x as 2D but the concept can be readily

adapted to three spatial dimensions. In each of the

spatial locations xj ; j ¼ 1; . . . ;M; the value of V is

sampled at N regularly spaced time points, ti; i ¼

1; . . . ;N; to yield a data set V ðxj ; tiÞ; j ¼ 1; . . . ;M; i ¼

1; . . . ;N:
A spatial time-aggregated map of V ðx; tÞ at a fine grid

is normally produced by first averaging V ðxj ; tÞ over the
whole period t ¼ Ndt; where dt ¼ ti � ti�1;

V̄ðxj ; t ¼ NdtÞ ¼
1

N

XN

i¼1

V ðxj ; tiÞ; j ¼ 1; . . . ;M. (1)

In the case of Eq. (1), the time-averaging window width,

W ; equals the total number of time points in the data
records. The interpolation of the M averages V̄ ðxj ; t ¼
NdtÞ to the fine grid can be carried out through

V̄Fðx; t ¼ NdtÞ ¼ F½V̄ ðxj ; t ¼ NdtÞ�; j ¼ 1; . . . ;M,

(2)

where V̄Fðx; t ¼ NdtÞ is the full grid interpolated map

of the whole period average of V ðxj ; tÞ; and F is a

spatial interpolation operator. Multiplication of

V̄Fðx; t ¼ NdtÞ by N yields the estimated time-integra-

tion of V ðx; tÞ over the full study domain. Note that in
this case, the complete spatio-temporal field representa-

tion of V ðx; tÞ is given by N identical maps V̄Fðx; t ¼
NdtÞ assigned to each of the time points 1; . . . ;N: This
points to a clear disadvantage of this approach, where

information about the temporal variability of the

complete spatio-temporal field is lost, with possible

adverse effects on the spatial mapping of the time-

aggregation of the variable.
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An alternative approach considers N=W time slices of

the sampled data, each spanning a time window t ¼
Wdt; where W is in the range of 1pWpN time points

and such that N=W is an integer. The averages of these

time slices are given by

V̄ ðxj ; tkÞ ¼
1

W

XkW

i¼ðk�1ÞWþ1

V ðxj ; tiÞ,

j ¼ 1; . . . ;M; k ¼ 1; . . . ;N=W , ð3Þ

where tk is the time period of the kth time slice. The

times slice averages V̄ ðxj ; tkÞ can be interpolated to the

fine grid through

V̄Fðx; tkÞ ¼ F½V̄ ðxj ; tkÞ�,

j ¼ 1; . . . ;M; k ¼ 1; . . . ;N=W . ð4Þ

The final interpolation map of the time-averaged V ðx; tÞ;
based on time-averaging window width W ; is obtained
by

V̄Fðx; t ¼ WdtÞ ¼
1

N

XN=W

k¼1

V̄Fðx; tkÞ. (5)

Multiplication of V̄Fðx; t ¼ WdtÞ by N yields a time-

integrated estimation map of V ðx; tÞ:
Note that the second approach generalises the first

one, with the procedure in Eqs. (3)–(5) degenerating to

that described by Eqs. (1) and (2) when W ¼ N: It will
be shown later that using a refined temporal resolution

of time-averaging can result in substantial benefits for

the spatial mapping. An apparent drawback of using a

narrow W ; especially for data sets consisting of a large
number of time points, is the additional computation

time required to carry out many more spatial interpola-

tions.

2.2. Estimating the accuracy of the spatial interpolation

There will always be some level of discrepancy

between real values of a spatial variable and their

corresponding interpolated surrogates. Interpolating a

time-aggregated variable, the discrepancy can be mini-

mised using V̄Fðx; t ¼ W optdtÞ; where W opt is the width

of an optimal time-averaging window. Estimating the

accuracy of the mapping for the purpose of choosing the

Wopt should be carried out by cross-validating results

against the actual observed values (Stone, 1974; Diem,

2003). We used a leave-one-out cross-validation proce-

dure, which is the limiting case and probably best form

of the Jacknife validation (Miller, 1974). A description

of its implementation in our case follows.

The cross-validated interpolation of the data averages

at the kth time slice is given by

V̄ ~Fðxj ; tkÞ ¼ ~F½V̄ ðxj ; tkÞ�,

j ¼ 1; . . . ;M; k ¼ 1; . . . ;N=W , ð6Þ
where the operator ~F produces an interpolated value at

each of the observation locations using data only from

the other M � 1 locations. The operation ~F results in a

set of M interpolation values at the data sampling

locations, each of which produced using only the

sampled data at the other locations. As such, this set

simulates interpolated values at locations where data

were not sampled. The cross-validated time-average of

Vðxj ; tÞ over the whole period is given by

V̄ ~Fðxj ; t ¼ WdtÞ ¼
1

N

XN=W

k¼1

V̄ ~Fðxj ; tkÞ,

j ¼ 1; . . . ;M; k ¼ 1; . . . ;N=W ð7Þ

and its multiplication by N yields the corresponding

time-integration. Note that the procedure described

above implements a true cross-validation. In the case

of kriging interpolation, the semivariogram is computed

separately for each of the cross-validated interpolation

points. This is in contrast to the common kriging cross-

validation procedure which recalculates the kriging

weights for each cross-validated point but utilises the

same semivariogram, computed using all of the data

points.

A quantitative estimation of the relative fidelity by

which the full grid interpolation V̄Fðx; tÞ represents the
corresponding true V̄ ðxÞ can be made by various

measures of the difference between the cross-validated

V̄ ~Fðxj ; tÞ values and the true values at the observation
locations V̄ ðxjÞ: Following Willmott (1982), we com-

pared the means and standard deviations of the

observed values and their cross-validated counterparts

calculated for each time-averaging window width, in

addition to the corresponding root mean square error

(RMSE) and the index of agreement (IA). The RMSE

summarises the mean difference in units of the observed

and interpolated values. The IA is a nondimensional

relative bounded measure in the range ½0; 1� recom-
mended by Willmott (1982) for comparisons between

model results and actual values. Full grid interpolation

maps, V̄Fðx; t ¼ WdtÞ; were produced to obtain an

insight into how, and to what extent, the differences in

the cross-validated accuracy measures are manifested in

spatial maps produced using different time-averaging

window widths.

2.3. Interpolation methods

IDW is the first interpolation method used in this

study. Detailed discussion of the method is given by

Isaaks and Srivastava (1989). The IDW interpolation

estimate is a linear combination of the observed values,

inversely weighted by the distances of the observation

locations from the interpolation point. The IDW

operator depends only on these distances and is

independent of the observed values on which it operates.
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Fig. 1. Study area. Shown are the Haifa Bay area shoreline

(thick line), elevation contours in 50m spacing, and the

locations of the monitoring stations and their elevations.

Marked with large squares are the four stations that started

to report during the study period.
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In the context of this paper, this means independence of

W ; provided that no data are missing from the data set.

The IDW operator can be readily applied to a series of

data time slices in an automatic manner. As such, it

serves as a benchmark to the more complicated

unsupervised kriging interpolation described below.

The linearity and the time slice independence of the

IDW interpolation is exploited in this study to gain

insight into the results achieved by the data-value

dependent and slightly nonlinear kriging method.

Kriging is an optimal spatial interpolation in the sense

of minimising the squared interpolation error. The

ordinary kriging interpolation estimator used in this

paper is a linear combination of the observed values,

weighted by a set of optimal weights derived using an

empirical semivariogram. The semivariogram measures

the data variance as a function of spatial lag and

provides information about the spatial autocorrelation

in the data (Diem, 2003). Through its dependence on the

semivariogram, the kriging operator depends on the

observed values on which it operates. This introduces

some level of nonlinearity in the kriging operator. It also

means that the operator varies with the time window

width, and hence the time-averaged spatial maps

produced by Eq. (5) or (7) depend on the data division

to time slices and on the width of the averaging window

W which was used to create them. In spite of being

relatively computationally intensive, the kriging method

became very popular in many fields due to its theoretical

reasoning and successful practical applications (e.g.

Matı́as et al., 2004; Cattle et al., 2002). An excellent

complete derivation and discussion of the method is

given by Cressie (1993).

In most applications, kriging interpolation is per-

formed interactively. A manual selection of various

parameters by a user determines the interpolation map.

Obviously, the thousands of sequential kriging applica-

tions required for this study cannot be carried out

manually. To facilitate a sequential unsupervised appli-

cation of the kriging interpolation, we first note that in

all applications of Eq. (4) or (6) the sampling locations

are identical for all the different data time slices. This

enabled choosing in advance for all the thousand

interpolations, a single set of geography-related para-

meters such as anisotropy angle and ratios, the number

of distance lags, and the range up to which the model

semivariogram should be fitted. The model semivario-

gram itself was selected from a list of conditionally

negative defined functions as the one best fitting the

empirical semivariogram (Cressie, 1993; Zimmerman

et al., 1999). The nugget parameter was set to zero in all

cases due to the relatively small sampling errors (see next

section). In some instances, mainly when the range of

the data values was very narrow, a decreasing linear

function best fitted the empirical semivariogram. In such

cases, a nugget model semivariogram was automatically
enforced, rendering all the interpolated values equal to

their mean value. To ensure robustness of the unsuper-

vised kriging, the quality of the interpolations was

assessed at each time slice by the RMSE between the real

values and the corresponding cross-validated interpola-

tions. Various parameters were adjusted by experimen-

tation until the unsupervised kriging achieved errors

within reasonable predefined bounds at every single time

slice. As a final check, unsupervised full grid interpola-

tions of a few hundred randomly selected time slices

were compared to the corresponding results obtained by

a manual interactive process. In the great majority of

cases, the differences were hardly noticeable.
3. Data

Concentrations of SO2 are routinely collected at

stations of the air quality monitoring network in Haifa

Bay area, Israel. Half-hourly data from 1 January 1996

to 31 December 2002 were available for the study. The

monitoring system includes 16 stations that operated

since 1996 and four additional stations that started to

report at the beginnings of 1997, 1998, 2000 and 2002.

Fifteen of the stations are maintained by the Haifa

District Municipal Association for the Environment and

the rest are maintained by the Israel Electric Corpora-

tion, whose local power station is a major source of SO2:
As depicted in Fig. 1, the monitoring stations are

heterogeneously distributed in the study area in a

pattern dictated by the population distribution and the

municipal borders. The sharp topographic variations

(see Fig. 1) cause complex regional wind patterns which

are locally affected by the presence of many narrow

ravines. These serve as air pollution conduits and may
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Table 1

Missing data points sorted into groups of missing data period lengths

1 2–4 5–14 15–49 50–199 200–499 500–999 1000–4999

1996 405 11,340 1494 3256 4993 3102 637 10,550

1997 658 11,857 1081 3467 5903 3756 2140 8749

1998 539 12,262 914 1535 6368 3519 3166 3951

1999 821 11,670 772 2135 4127 3664 1172 4653

2000 3073 6915 2590 7287 5245 2752 2074 12,173

2001 3875 7879 1187 1274 1971 2223 1659 1068

2002 4212 7902 2343 5909 3965 2240 3227 0

1996–2002 13,583 69,825 10,381 24,863 32,572 21,256 14,075 41,144

The table gives the total number of missing data of each group for each year separately and for the whole study period. Only data from

the 16 stations that reported throughout the study period were considered.
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be responsible for large horizontal SO2 concentration

gradients. The instrumentation in all the stations is

periodically calibrated. The typical observation error is

estimated at 1–2%, with an upper limit the smaller

between 5% of the data values and 20mgm�3: The
average SO2 values at the stations vary between 4.0 and

14:9 mgm�3 but confirmed values of up to 2691 mgm�3

were measured, and values in the hundreds of micro-

grams per cubic metre are common.

On an average, 10% of the data are missing in each

station, but this varies between stations and throughout

the years. As can be seen in Table 1, most common are

missing data periods of 1–4 time points (0.5–2.0 h).

However, continuous periods of missing data of up to

three months (4300 time points) exist and contribute a

large fraction of the total number of missing data points.

Table 1 was constructed using only data of the 16

stations that operated throughout the whole study

period. For improved spatial exposure coverage, one

may want to use the data from the additional four

stations. In that case, SO2 concentrations at these

locations in the years prior to their establishment should

be regarded as missing data points as well, with the

consequence of elevating the proportion of missing data

points to 18% of the complete 20 stations data set.

Except when mentioned otherwise, missing data were

not explicitly filled. To handle missing data points, the

summation of time series in Eqs. (1), (3), (5), and (7) was

always carried out by averaging the existing (i.e. actually

measured) values and multiplying the average by the

number of time points in the series. While this operation

is identical to simple summation if no missing data exist,

it implicitly assigns the whole series’ mean value to data

points that are missing. In the case of long periods of

missing data, the true mean of the missing data period

may be very different from the mean of the whole series

and hence the calculated sum might be far from the true

one. Attempts to fill the missing data gaps using linear

and nonlinear regression were only very marginally

effective for missing data periods longer than 48 h.
Neither other possible methods (e.g. Little and Rubin,

2002; Schafer, 1997) can be expected to assign perfect

substitutes, especially for data gaps during long time

periods. Thus, some effect of the missing data on the

mapping accuracy is unavoidable. In order to explore it

in a simple setting, none of the advanced data filling

methods was used.
4. Results

The cross-validation procedure described by Eqs.

(6)–(7) was applied to the SO2 data set using time-

averaging window widths of W ¼ 122;640, 17,520, 4380,
1460, 336, 48, 12, and 6 time points, which correspond

to the whole period (7 years), yearly, seasonal, monthly,

weekly, daily, 6-h, and 3-h averaging, respectively.

Table 2 compares the observed and estimated cross-

validated means and standard deviations of the exposure

to SO2 at the monitoring stations. The kriging mean

estimates at all the time-averaging window widths are

slightly higher than the observed mean. The IDW

estimates are distributed around the observed value.

However, the standard deviation of the observed

exposure is almost double that of the cross-validated

estimates, pointing to a lack of a dynamic range in the

exposure estimated by both kriging and IDW.

Fig. 2 shows the RMSE and the IA between the actual

exposure to SO2 at the monitoring stations and the

estimated exposures. Both the RMSE and the IA are

given as functions of the width of the averaging window

W : Results are given for the cases of IDW and kriging as

the interpolation operators, using both the full 20

stations set and the partial set of 16 stations that

operated throughout the whole study period. Examining

the upper panel of Fig. 2, we first note that the RMSE of

both the kriging and IDW results vary as a function of

the averaging window width. Moreover, using any time-

averaging window width resulted in the RMSE being

lower than that of full period averaging, with the
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Table 2

Comparison of observed and estimated statistics

3 hour 6 hour Day Week Month Season Year Period

Observed mean 1.742 1.742 1.742 1.742 1.742 1.742 1.742 1.742

Estimated mean, kriging 1.770 1.759 1.759 1.763 1.756 1.753 1.763 1.832

Estimated mean, IDW 1.729 1.727 1.737 1.754 1.760 1.762 1.771 1.790

Observed Std 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685

Estimated Std, kriging 0.328 0.328 0.334 0.341 0.329 0.336 0.352 0.258

Estimated Std, IDW 0.359 0.359 0.356 0.361 0.368 0.366 0.372 0.337

The estimated statistics refer to the cross-validated interpolations carried out using data from all the 20 monitoring stations through

Eq. (7), using IDW or kriging as the interpolation operators. All values are given in 109 mgm�3 s:
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Fig. 2. RMSE (in 109 mgm�3 s) and IA between the true

exposure at the monitoring stations and the corresponding

cross-validated exposure, calculated as a function of the time-

averaging window width W : Window widths are given in time

points units that correspond to 3-h, 6-h, daily, weekly, monthly,

seasonally, yearly, and the whole period (7 years) averaging.

Circles denote results obtained using the complete 20 stations

data set. Triangles denote using only data from the 16

monitoring stations that operated throughout the whole study

period. Results using kriging and IDW interpolations are

denoted by filled and empty symbols, respectively.
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minimum error achieved at W ¼ 48 time points. The IA

variations are smaller, especially in the IDW results, but

still the maximum agreement is achieved using W ¼ 48:
This implies that for our SO2 data set, the most accurate

exposure estimation is achieved using daily averaging.

For a complete data set (no missing data), using a linear

interpolation operator like IDW, the exposure values

and thus the interpolation accuracy measures should not

vary with the time-averaging window width. Hence, the

existence of missing data in the SO2 is probably the

cause for any variations noted in the IDW results. The

results obtained using kriging interpolation show much

more variability, pointing to the important role of the

data-value dependency and the slight nonlinearity of

kriging in determining the interpolation accuracy as a

function of W :
A second point to note in Fig. 2 is that for both

interpolation methods the exposure estimates obtained

using data from all the 20 stations (circles) have a lower

RMSE and a higher IA than those obtained using the

partial set of 16 stations (triangles). This is not

surprising since spatial interpolations tend to improve

as a result of better spatial coverage of observations.

However, in our case, the additional monitoring stations

supply additional observed information only during part

of the study period. Errors due to inaccurately filling

data in these stations for the periods before their

establishment partially cancel the benefits of using

additional stations when a whole period time-averaging

window width is used. However, employing narrower

time-averaging window widths eliminates this problem

and enables better use of the improved spatial coverage

provided by the additional stations.

The last important point that Fig. 2 depicts is the

superior performance of kriging compared to that of the

IDW interpolation. However, note that more accurate

exposure estimation is obtained using IDW interpola-

tion at the wide time-averaging window widths. Only

employment of narrow averaging window widths

enabled realising the advantage of kriging and achieving

the best overall estimation.
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To appreciate the significance of the variations in the

cross-validated RMSE and IA for full grid mapping,

maps produced using different time-averaging window

widths can be examined and compared with the actual

exposure at the monitoring stations. Fig. 3a shows the

full grid map obtained through Eqs. (3)–(5) using

kriging interpolations and the optimal window width

of W ¼ 48 time points. In comparison, Fig. 3b has been

obtained using the same interpolation method through

Eqs. (1) and (2), i.e. using a whole period averaging

window width. The two full grid exposure maps were
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Fig. 3. Actual exposure to SO2 at the 16 monitoring stations

that operated since 1996, superimposed on the estimated spatial

exposure based on interpolation of the monitoring data from all

the 20 stations to a fine regular grid. (a) Fine grid interpolation

carried out using daily averages of the data. (b) Fine grid

interpolation of the whole period (7 years) data averages. The

two full grid exposure maps were identically colour-scaled with

the colours at the extreme edges of the scale corresponding to

the minimum and maximum actual exposure values. Exposure

values are given in 109 mgm�3 s:
produced using data from all the 20 monitoring stations.

They were identically colour-scaled with the colours at

the extreme edges of the scale corresponding to the

minimum and maximum actual exposure values at the

16 monitoring stations that operated since 1996. These

actual exposure values are superimposed on both maps

for comparison. The exposure at the four additional

stations are not shown due to lack of data from the

periods before they started to operate.

The interpolated exposure values in Fig. 3a show a

dynamic range which is wider than that of the

corresponding values in Fig. 3b, and is closer to the

dynamic range of the actual exposure at the monitoring

locations. The topography in the Haifa Bay area is

complex (Fig. 1) and results in large anisotropic

horizontal gradients of SO2 concentrations. Accord-

ingly, the spatial resolution of the exposure map in Fig.

3a is finer, and better reproduces the actual exposure

values in the stations. Thus, the spatial exposure

estimates in Fig. 3a are visually more plausible than

the exposure estimates in Fig. 3b, as well as possessing

the corresponding better cross-validated RMSE and IA,

as shown in Fig. 2.
5. Discussion

It has been recently shown that the apparently

innocent technical issue of time-averaging can have a

significant impact on the prediction of time series using

nonlinear predicting models (Yuval and Hsieh, 2002)

and on the analysis of regime structures of variables that

have non-Gaussian temporal distribution (Teng and

Monahan, 2004). This paper studied the impact that

time-averaging have on the accuracy of time-aggregated

spatial mapping of spatio-temporal variables. The

results given above clearly demonstrate the possible

benefits of spatial mapping which is based on narrow

time-averaging window widths.

The processes of testing for the optimal averaging

window width and producing the corresponding best full

grid interpolation maps might be computationally

expensive if the data records are long and the optimal

time-averaging window is narrow. A practically impor-

tant issue is therefore the trade-off between computing

time and interpolation accuracy. Another important

issue is the choice of method to carry out the

interpolations. The results of this study suggest that

the kriging method can have an advantage over the

IDW interpolation but that this advantage might be

realised only while using relatively narrow time-aver-

aging window widths. Implementing kriging in the

processes of Eqs. (3)–(5) and (6)–(7) is not straightfor-

ward and requires a reliable and robust scheme to carry

out unsupervised interpolations. This study has shown

that development of such a scheme is feasible.
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An interesting question regards the mechanisms that

generate the noted differences in the mapping accuracy

and how they affect its variability as a function of the

time-averaging window width. In particular, it is

important to understand in which cases mapping of

time-aggregated data can be expected to benefit from

using a narrow time-averaging window width, and

whether the width of the optimal averaging window

can be related to any known parameter of the data. This

study points to the presence of missing data as one cause

for the noted variation in mapping accuracy. Filling

missing data, especially during long time periods, is

prone to some level of inaccuracy even when a

sophisticated data imputation scheme is used (Little

and Rubin, 2002). Thus, the mapping accuracy is always

detrimentally affected, to a certain degree, in the

presence of missing data. Using narrow time-averaging

window widths, the deleterious effect of the missing data

is minimised. The effect that the time-averaging had on

the accuracy of mapping using the kriging method was

much larger than the effect on mapping using IDW (see

Fig. 2), suggesting that the kriging method can benefit

more from using narrow time-averaging window widths

due to its nonlinearity and/or data-value dependency.

Studies comparing the performance of the kriging and

IDW interpolation methods disagree about which

method is more accurate (Zimmerman et al., 1999).

The results of this paper suggest that the conclusions

drawn from such studies which use time-aggregated

variables may be biased by the selected width of the

data’s time-averaging window.

Analysis of geostatistical variables that show pro-

nounced spatio-temporal behaviour is a developing

research field. Recent publications (e.g. Carrol et al.,

1997; Christakos and Vyas, 1998; De Cesare et al., 2001;

Kyriakidis and Journel, 2001) proposed promising

statistical methods for modelling complete spatio-

temporal fields. Improved spatial maps of time-aggre-

gated variables will probably result as by-products of

such processes. However, there are still many theoretical

and practical problems that need addressing (De Cesare

et al., 2001) before these methods enter the arsenal of the

geostatistics practitioner. This paper addresses an issue

concerning the accuracy of mapping using the main-

stream data interpolation methods. We believe that for

the foreseeable future adopting our conclusions can lead

to generation of more accurate maps of time-aggregated

variables.
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