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a b s t r a c t

Conservation planning requires knowledge of the distribution of all species in the area of interest. Sur-
rogates for biodiversity are considered as a possible solution. The two major types are biological and
environmental surrogates. Here, we evaluate four different methods of hierarchical clustering, as well
as one non-hierarchical method, in the context of producing surrogates for biodiversity. Each clustering
method was used to produce maps of both surrogate types. We evaluated the representativeness of each
clustering method by finding the average number of species represented in a set of sites, one site of each
domain, which was carried out with Monte-Carlo permutations procedure. We propose an additional
measure of surrogate performance, which is the degree of evenness of the different domains, e.g., by cal-
culating Simpson’s diversity index. Surrogates with low evenness leave little flexibility in site selection

since often some of the domains may be represented by a single or very few sites, and thus surrogate
maps with a high Simpson’s index value may be more relevant for actual decision making. We found that
there is a trade-off between species representativeness and evenness. Centroid clustering represented
the most species, but had very low values of evenness. Ward’s method of minimum variance represented
more species than a random choice, and had high evenness values. Using the typical evaluation measures,

etho
Ward
the Centroid clustering m
index is also considered,

. Introduction

Conservation of biodiversity requires extensive knowledge of
he distribution of a myriad of species. Such knowledge is scarce,
nd collecting all necessary data is often prohibitively costly.
ne widespread solution is to use surrogates for biodiversity

e.g. Belbin, 1993; Faith and Walker, 1996; Ferrier and Watson,
997). There are two types of biodiversity surrogates. In biolog-

cal surrogates, the distribution of a taxonomic group is used to
redict distribution patterns of other groups (Dobson et al., 1997;
eyers et al., 2001; Kati et al., 2004). Environmental surrogates
re classifications of an area into land parcels with similar phys-
cal characteristics (Leathwick et al., 2003; Bonn and Gaston, 2005;
odrigues and Brooks, 2007). An ongoing debate concerns the effec-
iveness of surrogates in predicting species assemblages (Faith and

alker, 1996; Rodrigues and Brooks, 2007). Ferrier and Watson
1997) proposed two ways to quantitatively assess the effective-
ess of surrogates: (1) based on the number of species represented

y a set of sites selected for conservation using different surrogates,
nd (2) on the level of correlation between the spatial structure of
surrogate and of the taxonomic group of interest.

∗ Corresponding author. Tel.: +972 4 8293471; fax: +972 4 8293471.
E-mail addresses: rkent@tx.technion.ac.il, rkent@technion.ac.il (R. Kent).

470-160X/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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d was most efficient for surrogate production. However, when Simpson’s
’s method of minimum variance is more appropriate for managers.

© 2010 Elsevier Ltd. All rights reserved.

A common approach for producing surrogates for biodiver-
sity is classification with cluster analysis (Faith and Walker, 1996;
Trakhtenbrot and Kadmon, 2005). Clustering can be conducted
with various partitioning or agglomerating methods (Everitt, 1993;
Legendre and Legendre, 1998), based on similarity or dissimilarity
measures. Several arbitrary decisions are made during this process,
regarding the similarity measures, number of classes and the spe-
cific clustering algorithm to be used (Everitt, 1993). These decisions
may largely affect the resulting surrogate map.

Here, we evaluate five clustering methods commonly used in
conservation planning, representing three different approaches to
clustering, average based methods (Average, Centroid and Ward’s
minimum variance), object based methods (i.e. furthest neighbor)
and non-hierarchical classification (k-means). This study attempts
to take steps towards understanding surrogacy in two directions.
First, we quantitatively evaluate the efficiency of different cluster-
ing methods for surrogate production. We assess both biological
and environmental surrogates, by applying different algorithms to
the same dataset. The second element of this study adds a new
aspect to the evaluation of surrogate performance, measuring the
evenness of surrogate classes, in addition to their species repre-

sentativeness. Surrogates are tools for planning reserve networks;
classes covering very small areas are more difficult to incorporate
into such networks. Surrogates with a low evenness values are char-
acterized by few dominant classes, and other classes occupying a
negligible area (Fig. 1b). In surrogates with a high evenness value,

dx.doi.org/10.1016/j.ecolind.2010.12.005
http://www.sciencedirect.com/science/journal/1470160X
http://www.elsevier.com/locate/ecolind
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F , produced with five different clustering algorithms: Average, Centroid, Ward’s method,
c on’s diversity index.
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ig. 1. Biological surrogates with eight classes, based on woody species distribution
omplete linkage and k-means clustering from left to right, respectively. D is Simps

ach class occupies a substantial part of the area. Such surrogate
aps allow managers more flexibility in choosing areas for conser-

ation and thus, more considerations may be taken into account,
uch as development, connectivity and land costs (Fig. 1). We use
impson’s diversity index as a measure of evenness.

. Methods

.1. Study area

Mt. Carmel in northern Israel has an area of ca. ∼ 280 km2

nd mean elevation of 220 m (Fig. 2). The climate is eastern
editerranean, with mean annual rainfall of 650 mm year−1 and

emperature averages ranging between 11 ◦C in January and 24 ◦C
n August. The most common soil types are Tera Rossa and Rendz-
na. Vegetation is comprised eastern Mediterranean scrubland
onsisting of structurally rich and diverse vegetation communities
Naveh and Dan, 1973; Le Honerou, 1981; Naveh and Kutiel, 1986).
hese landscapes, commonly referred to as vegetation mosaics, are
ighly heterogeneous at a broad range of spatial scales, ranging
etween grain size as small as a few meters to landscape level
cales (Naveh, 1975; Shoshany, 2000; Bar Massada et al., 2008). The
ne-grained mosaic is characterized by woody patches, herbaceous
learings, exposed rock and bare ground (Perevolotsky et al., 2002).
grid of 500 m × 500 m was superimposed on the area, dividing it

nto, 1145 cells. All analyses were carried out at this spatial scale.

.2. Species distribution data

Presence–absence data for geophytes and woody plants were
ollected in 100 sampling sites distributed randomly in the entire
tudy area, from October 2002 to May 2003 (see Carmel and Stoller-
avari, 2006 for a complete description of fieldwork). Field data
n each species, along with environmental parameters (Table 1),
ere used to create a habitat suitability map for each species.

ield data were collected at 100 random sampling sites distributed
cross the study area, excluding urban and agricultural areas.
ite size was 0.1 ha. Presence and absence of each woody plant

nd geophyte species were recorded at three sampling points
ithin each site, with a distance of 20 m between sampling points.

he sample area was 0.75 m2. Habitat suitability maps were pro-
uced with logistic regression models (Guisan and Zimmermann,
000) which were applied to the study area in the geographic Fig. 2. A map of the study area, in the north of Israel.
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Table 1
Environmental parameters used in the study for logistic regression models and environmental surrogates for biodiversity.

Variable Source and spatial resolution

Normalized difference vegetation index—a measure of primary productivity Produced from Landsat images, 25 × 25 m
Distance to nearest road Produced from a vectoric roads map of the region, 500 × 500 m
Presence/absence of Terra Rossa soil in grid cell Derived from polygons of soil association produced by the Agriculture ministry of Israel
Presence/absence of Rendzina soil in grid cell
Presence/absence of woody vegetation cover in grid cell Supervised classification of an aerial photograph of the region at 25 × 25 m
Average annual precipitation Results of climatic models, produced at 25 × 25 m resolution
Mean daily temperature in the coldest month (January) Results of climatic models, produced at 25 × 25 m resolution

esults
erived
erived
erived

i
p
m
p
6
e

F
n

Mean daily temperature in the hottest month (August) R
Mean geographic aspect of the slope in the grid cell D
Mean slope (in degrees) in the grid cell D
Mean elevation in the grid cell D

nformation system (GIS). Habitat suitability maps consisting of
robabilities of occurrence, were transformed into binary (0/1)
aps, with a threshold of 0.5. Statistically significant models were
roduced for 23 geophyte species and 37 woody species. These
0 distribution maps were used in further analyses (see Fig. 3 for
xample).

ig. 3. Habitat suitability map for the tree species Arbutus andrachne on Mt. Carmel,
orthern Israel, produced with a logistic regression species distribution model.
of climatic models, produced at 25 × 25 m resolution
from a 33 × 33 m resolution digital elevation model
from a 33 × 33 m resolution digital elevation model
from a 33 × 33 m resolution digital elevation model

2.3. Environmental data

Environmental parameters used in this study included measures
of climate, soils, vegetation, topography and an anthropogenic
disturbance index (Table 1). All topographic parameters were cal-
culated from a digital elevation model of the study area. Parameters
were chosen to represent independent influences, i.e., climate has
a different effect than topography; primary productivity affects
species composition differently than distance to road or soil type,
etc. A total of 11 parameters were used, both for the logistic regres-
sion models (that produced species distribution maps), and for the
environmental surrogates. All parameters were extracted from GIS
layers and averaged over 500 m cells in order to fit the grid.

2.4. Surrogate production

Both types of surrogates, biological and environmental, were
produced using five clustering algorithms: Average, Centroid and
Ward’s (average based approach), furthest neighbor (object based
approach) and k-means (non-hierarchical classification) (Legendre
and Legendre, 1998). We applied each clustering method to three
schemes—three, eight and twelve domains. We used the two
functional groups (geophytes and woody plants) alternately, as
surrogates for each other. In total, we examined 45 different surro-
gates.

2.5. Biological surrogates

We calculated two similarity matrices for woody and geo-
phyte species using Jaccard’s similarity coefficient. The similarity
matrices were then used to classify the 1145 cells into domains.
We constructed three surrogate types: environmental surrogates,
biological surrogates based on woody species distributions and bio-
logical surrogates based on geophyte species distributions. Each of
these surrogate types was produced with three different domain
numbers: three, eight and twelve, yielding nine combinations of
surrogate type and the number of domains. Each such combina-
tion was produced using each of five different clustering methods:
Average, Centroid, Ward’s, complete linkage and k-means. In total
we produced 45 surrogate maps.

2.6. Environmental surrogates

Environmental surrogates were produced in the same man-
ner as the biological surrogates, using GIS layers of environmental
parameters instead of species distributions (Table 1). All environ-
mental parameters received the same weight in the analysis. We

chose Gower’s similarity coefficient instead of Jaccard’s in order to
produce environmental surrogates, since it allows incorporation of
both continuous and binary parameters, such as presence/absence
of a soil type or woody vegetation (Gower, 1971; Legendre and
Legendre, 1998). In addition, when applied to binary data, Gower
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Table 2
Summary of the ranks of all different combinations of the number of classes and
clustering algorithm used in the production process. Each algorithm was ranked 1–5
according to its relative efficiency in each clustering scheme (3, 8 and 12 classes), for
each of the two performance evaluation measures (representativeness, Simpson’s
index). Values in the table are the sum of the ranks of each algorithm. Ranks have
no units.

Clustering algorithm Representativeness Simpson’s index

Algorithm ranking
Average 32.5 18
Centroid 38.5 10
R. Kent, Y. Carmel / Ecologic

s equal to Jaccard, thus the two indices are compatible and inter-
hangeable (Dunn and Everitt, 1982).

.7. Performance evaluation

Performance of the five different types of clustering was com-
ared in two ways: (a) species representativeness—the number of
pecies that are represented when a single site of each class is cho-
en randomly and (b) Simpson’s diversity index, in order to evaluate
he evenness of the different domains within each surrogate map.

For species representativeness we recorded the cumulative
umber of species present in a set of sites, when a single site from
ach domain is chosen at random. Presence of species was deter-
ined by the distribution maps generated by habitat suitability
odels, as described above. Ten thousand random sets of sites
ere selected using a Monte-Carlo permutation procedure, one site

rom each domain. As a baseline for evaluating species representa-
iveness, we used the permutation procedure to select completely
andom sets of sites, matching the clustering schemes (3, 8 and
2 sites) and recorded the average number of species represented

n such sets over the 10,000 permutations. Environmental surro-
ates were evaluated using both taxonomic groups, while biological
urrogates were evaluated against each other.

Simpson’s diversity index was calculated for each set of surro-
ates, to test the diversity of the different classes.

To evaluate the different clustering algorithms, we gave the dif-
erent algorithms a rank between 1 and 5, for their performance
ompared to the other methods for each surrogate. We ranked
nvironmental surrogates according to their performance for each
axonomic group separately, and used the average rank for the final
anks. We ranked biological surrogates according to their perfor-
ance on the other group. We gave each surrogate type a separate

ank for each efficiency measure, and added them for total relative
fficiency. In addition, we evaluated nine environmental surrogate
aps of the entire flora of Israel, produced by Trakhtenbrot and

admon (2006) with three different algorithms (Average, Centroid
nd Ward’s), and with 3 levels of partitioning (3, 8 and 12 classes).
rakhtenbrot and Kadmon report that the relative efficiency (repre-
entativeness) of the different algorithms was constant regardless
f the number of classes. Average clustering performed best, fol-
owed by Centroid, and Ward’s method was the least effective. Here,

e calculated Simpson’s index for these nine surrogate maps, and
anked the different maps accordingly.

. Results

.1. Species representativeness

The Monte-Carlo permutations revealed that Centroid clus-
ering method was the most efficient algorithm in representing
pecies, representing an average of 94% of the target species for
he eight class scheme. The Centroid method was superior to the
ther methods in every combination of environmental surrogates,
nd in four of six combinations of biological surrogates. The Average
lustering method was ranked highest in two combinations, rep-
esenting an average of ∼86% of the species, Ward’s method was
anked third in species representativeness, representing an aver-
ge of ∼82% of the species for a scheme of eight classes. Complete
inkage and k-means were the least effective methods for repre-
enting species with 79% and 81%, respectively. Although these are

imilar levels of representativeness as Ward’s method, when com-
ared to a set of randomly selected sites, both Complete linkage and
-means were the only methods that represented less species than
uch a random set of sites in one of the 9 surrogate combinations
Fig. 4). Fig. 4 shows the results the Monte-Carlo permutations of
Ward’s 22 43
Complete linkage 23.5 25
k-Means 19 39

species representativeness for surrogates with eight classes. Surro-
gates with three and 12 classes showed a similar trend. All types of
surrogates except one based on complete linkage and one based on
k-means clustering represented more species than a random choice
of the same number of cells from the grid (Fig. 4). We ranked the
different clustering methods according to their relative efficiency,
in order to create a single combined efficiency measure, of both
representativeness and evenness, summarized in Table 2.

3.2. Domains evenness

Fig. 1 shows that the Centroid method effectively produced only
one large class across the entire area (Fig. 1b), and the remain-
ing seven classes occupy a very small area on the perimeter. Four
classes occupied only a single cell, and one class occupied two cells,
with a value of Simpson’s index of 0.03 (Fig. 5), apparently rep-
resenting locations of rare species. Similarly, the Average method
produced two large classes and six very small classes (Fig. 1a),
with four classes occupying only a single grid cell, resulting in
Simpson’s index of 0.42 (Fig. 5). Ward’s method produced eight
effective classes (Fig. 1c), with a value of Simpson’s index of 0.86
(Fig. 5) for the map in Fig. 1c, and so did complete linkage and k-
means (D = 0.77 and 0.86, respectively). Ward’s method produced
surrogates with the highest Simpson’s index value in seven out of
nine cases (Fig. 5). We ranked the different clustering algorithms
according to their Simpson’s index values. Ranks given according
to Simpson’s index are summarized in Table 2.

4. Discussion

Evaluating the efficiency of surrogates for biodiversity is a com-
plex task that requires knowledge of the entire biological diversity
(Rodrigues and Brooks, 2007). A common solution is to use a group
of known species as the target group, and to evaluate how well the
surrogates represent them. Ferrier and Watson (1997) introduced a
measure of efficiency, the species accumulation index, which mea-
sures how many species out of the entire pool are represented by a
set of domains, and also compares it to a random selection of sites.
Another measure they proposed was the Mantel correlation coef-
ficient, which is the correspondence between domains and species
distributions (Manly, 2007). These measures do not fully account
for an important aspect of surrogacy, namely, its actual use for
site selection, and additional information is needed, such as the
evenness of the different domains. If domains are relatively evenly
sized, higher flexibility is allowed for site-selection between vari-
ous options, whereas if some domains are represented by very few

pixels (as in the case of the centroind algorithm output), little flex-
ibility is left to managers in the site selection process. Evenness is
an intrinsic trait, thus it is an independent measure of surrogate
quality.
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ig. 4. Average number of species represented by a set of surrogates for the eight c
nly, and vice versa. ‘Rand’ stands for a random selection of eight cells without clas
election of sites, one site per surrogate class.

The various algorithms could be divided into two groups: the
verage and Centroid methods, which represented more species

han the other algorithms, but had low values of Simpson’s index,
nd Ward’s, complete linkage and k-means, which represented less
pecies but had relatively high Simpson’s values. Due to the fact that
e used modeled distributions to determine presence of species

n selected sites, and since we had a relatively small number of
pecies (23 and 37 species of geophytes and woody plants, respec-
ively), there were multiple spatial configurations that represented

ost of the species. That was evident in the relatively small differ-
nces in species representativeness. However, applied to a larger
pecies pool, even a 15% difference in the number of represented
pecies may actually mean leaving dozens of species represented
n a reserve network using a given method, or protecting them
sing another. Unfortunately, none of the algorithms we evaluated

xcelled in both species representativeness and domain evenness.

We used distribution data that we extrapolated from a dedi-
ated survey as our biological dataset. Such extrapolation is bound
o contain errors of omission and commission, i.e. to predict to
bsence of a species from a location where it exists, and to pre-

Fig. 5. Simpson’s diversity index
clustering scheme. Surrogates based on geophytes were tested with woody plants
tion, repeated 10,000 times. Values are average of 10,000 permutations of random

dict the presence of a species in a location from which it is
actually missing. However, since we conducted the performance
evaluation of the different methods on the modeled distribu-
tions, such omission and commission errors do not affect the
results of our evaluation. For the purpose of planning an actual
reserve network, it is necessary to validate such models, and assess
their accuracy levels prior to proceeding with surrogate produc-
tion.

Current conservation practice takes place at two levels, coarse
and fine filters (Maddock and Du Plessis, 1999; Bonn and Gaston,
2005; Orme et al., 2005). Biodiversity surrogates are considered
coarse filters, which are tools for capturing biodiversity in its
broadest sense, including habitats, ecological processes and entire
ecosystems, as well as individual species (Noss, 1990). Fine filters
concern rare or endangered species, which could have been missed

by coarse filter methods. Surrogates with domains that cover very
small geographic areas (low Simpson Index value), such as those
produced by the Average and Centroid clustering algorithms, may
be difficult for use as coarse-filters, due to the local nature of some
of the resulting domains.

for each type of surrogate.
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The effect of the clustering algorithm on the efficiency of
urrogacy has been largely overlooked, and very few studies
uantitatively evaluated alternative algorithms. Trakhtenbrot and
admon (2006) reported that the Centroid algorithm resulted in the
est surrogates, which is similar to our results, when considering
pecies representativeness alone. However, by calculating Simp-
on’s diversity index in addition to species representativeness, we
how that what seemed to be the better surrogate (Centroid-based
luster analysis), may be a less effective tool for biodiversity conser-
ation from certain perspectives, although the number of species
t represents may be larger. In general, our results point out that
here is no ‘optimal solution’ to surrogacy, and each case should be
onsidered separately. Trakhtenbrot and Kadmon (2006) reported
hat, when applying a weighting scheme similar to the weights in
ur study, the method that ranked highest in species representa-
iveness of vascular plants in the entire state of Israel was Average,
ollowed by Centroid, and that Ward’s method was the least effec-
ive. Analyses of Trakhtenbrot and Kadmon’s (2006) maps showed
hat Ward’s method always produced maps with higher values of
impson’s index, and Average clustering was superior to Centroid in
wo of the three combinations. Our results, along with the analyses
e conducted on Trakhtenbrot and Kadmon’s (2006) data, imply

hat there is a trade-off between species representativeness and
omain evenness.

Knight et al. (2008) reported the gap between conservation
cience and conservation actions. Our results indicate that a solu-
ion that may be considered scientifically superior may, in fact,
e incompatible for managers. Fig. 1 is an example of the differ-
nce between scientifically ‘superior’ and management-compatible
olutions. We conclude that scientific work on prioritization of
reas for conservation should include a final step, which is mostly
isregarded in the literature, i.e. looking at the resulting maps, and
xamining them through a field conservationist’s eye.
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