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INTRODUCTION

Studying the relationships between species and their physical

environment requires data on the distribution of species in space.

Ideally, such analyses would be based on presence–absence data

(P–A), collected through dedicated surveys. However, such data

are scarce, and exist only for areas of small spatial extent, and

are especially uncommon in the most diverse areas of the planet

(Elith et al., 2006; Ferrier & Guisan, 2006; Loiselle et al., 2008;

Sastre & Lobo, 2009). Presence-only (P-O) data have various

shortcomings with regard to analyses of species–environment

relationships, for example (1) they lack explicit information on

unvisited locations and (2) they might contain errors and

biases. Potential biases include spatial bias (concentration of
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ABSTRACT

Aim Studying relationships between species and their physical environment

requires species distribution data, ideally based on presence–absence (P–A) data

derived from surveys. Such data are limited in their spatial extent. Presence-only

(P-O) data are considered inappropriate for such analyses. Our aim was to

evaluate whether such data may be used when considering a multitude of species

over a large spatial extent, in order to analyse the relationships between

environmental factors and species composition.

Location The study was conducted in virtual space. However, geographic origin

of the data used is the contiguous USA.

Methods We created distribution maps for 50 virtual species based on actual

environmental conditions in the study. Sampling locations were based on true

observations from the Global Biodiversity Information Facility. We produced P–A

data by selecting �1000 random locations and recorded the presence/absence of

all species. We produced two P-O data sets. Full P-O set was produced by

sampling the species in locations of true occurrences of species. Partial P-O was a

subset of full P-O data set matching the size of the P–A data set. For each data set,

we recorded the environmental variables at the same locations. We used CCA to

evaluate the amount of variance in species composition explained by each

variable. We evaluated the bias in the data set by calculating the deviation of

average values of the environmental variables in sampled locations compared to

the entire area.

Results P–A and P-O data sets were similar in terms of the amount of variance

explained by the different environmental variables. We found sizable environmental

and spatial bias in the P-O data set, compared to the entire study area.

Main conclusions Our results suggest that although P-O data from collections

contain bias, the multitude of species, and thus the relatively large amount of

information in the data, allow the use of P-O data for analysing environmental

determinants of species composition.
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Biodiversity, canonical correspondence analysis, environmental determinants,

GBIF, simulations, species composition, virtual species.
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observations in easily accessible locations and over sampling of

species-rich areas, Ponder et al., 2001; Kadmon et al., 2004),

taxonomic bias (over-representation of certain species, Hijmans

et al., 2000), and environmental bias (under-representation of

areas at the edges of the environmental gradient, Loiselle et al.,

2008). In order to quantify the amount of bias in the data set, we

carried out analyses to quantify the amount of environmental

and geographical bias in a relatively large sample of observation

locations in GBIF (GBIF data portal, http://data.gbif.org). The

GBIF portal allows one to access data from multiple museum

and university collections simultaneously, and to download the

data in a uniform format. The data also go through a screening

process to unify synonyms and omit obvious errors. In contrast

to the shortcomings described earlier, data in portals like GBIF

are readily available in large quantities and, because of an

accelerating effort to digitize and publicize these data, are also

highly accessible (Graham et al., 2004). The validity of using

P-O data in ecological analyses was studied several times.

Results have been inconclusive, with some authors reporting

sufficiency of P-O data (Elith et al., 2006; Loiselle et al., 2008),

superiority of P–A data (Guisan & Zimmermann, 2000; Hirzel

et al., 2001; Graham & Hijmans, 2006), or differential success

for different species (Elith et al., 2006; Tsoar et al., 2007). The

focus of most studies was the distribution of a single species or

modelling species-richness patterns. Ferrier & Guisan (2006)

reviewed approaches to community-level modelling. They used

both P–A and P-O data for their models, and concluded that P-

O data are problematic for such analyses. They stated that owing

to data limitations, analyses of species composition are limited

to areas of small spatial extent. To the best of our knowledge, the

value of P-O data for studying species composition determi-

nants at large spatial scales was seldom evaluated before (but see

Kadmon & Heller, 1998; Yom-Tov & Kadmon, 1998; Kadmon

& Danin, 1999).

In this study, we attempt to determine whether, when

considering a multitude of species over a large spatial extent,

data type (P–A vs. P-O) has a significant effect on the results of

analyses of species–environment relationships. A direct com-

parison of the effect of data type on the results of such analyses

requires complete data sets of the two types, containing data

on the same species and with the same spatial extent.

Therefore, available data of actual observations is not optimal

for such analyses, and a simulation study seems to be the most

appropriate solution. We simulated P–A and P-O data sets of

virtual species within the contiguous USA. We examined the

effect of data type on the results of multivariate analyses of the

environmental determinants of species composition. In order

to keep the simulations as close to reality as possible, we used

real environmental data to define species niches. We also used

real locations of observations to create a P-O sampling scheme,

incorporating real biases into our data sets.

METHODS

We created 50 distribution maps for virtual species within the

land area of the contiguous USA. Species distributions were

based on niches reflecting actual environmental conditions in

the study area. The realized ecological niche of each virtual

species was defined by selecting a random location within the

study area to represent the niche centre in parametric space

and recording the values of six environmental variables in this

location: maximum temperature of the hottest month (MaxT),

minimum temperature of the coldest month (MinT), annual

precipitation (Prec), altitude (alt), normalized difference

vegetation index (NDVI) and distance to nearest urban area

(dtu). We used climatic and topographic variables from

Worldclim (Hijmans et al., 2005). We used an NDVI layer

from MODIS (http://glcf.umiacs.umd.edu/data/ndvi) and pro-

duced a layer of distance to nearest urban area from a map of

the urban areas of the USA [data was extracted from ESRI data

files (ESRI, 1999)]. We tested the correlation level between

each pair of variables at 200 random locations within the study

area. The average correlation level was 0.36, and the maximum

correlation was 0.84. All environmental layers were rescaled to

a resolution of 0.0833� (�10 km). Niche breadth was set as a

random fraction (between 0.05 and 0.5) of the true range of

each variable in the study area, above and below the niche

centre. Simulations were carried out in MatLab (MathWorks,

Natick, MA, USA). Distribution maps were produced for each

virtual species in ArcGIS (ESRI, 1999) by superimposing a grid

with mesh size of 0.0833� (�10 km) over the entire study area.

Grid cells were assigned a value of 1 where all environmental

variables were within the specified realized niche, and zero

otherwise (Fig. 1).

Presence–absence and presence-only data sets

To produce a P–A data set, we randomly selected 1072

locations from the geographic space of the entire study area

(1072 is the median number of sampling locations found in 17

Figure 1 Distribution maps of two of the virtual species. One

with a wide niche (top panel) and one with a relatively narrow

niche (bottom panel).
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studies that used presence–absence data). For each location, we

recorded the presence/absence of all virtual species, producing

a matrix of 50 columns and 1072 rows. The values of eight

environmental variables [the same six variables used for

defining niches plus temperature seasonality (standard devia-

tion*100; TempS) and precipitation seasonality (coefficient of

variance; PrecS)] were recorded in the same 1072 grid cells,

resulting in an environmental data matrix of eight columns by

1072 rows. The two additional variables were expected to show

a weaker relationship with species composition than the

variables used to define the niches. As they are correlated to

variables defining the species’ niches, we expected to find some

relation between them and the distribution of the species.

P-O data typically contain spatial bias towards easily

accessible locations, as well as areas with high biodiversity

(Hijmans et al., 2000). In order to incorporate such bias into

our data sets, we used the locations of real observations of a

random selection of avian species in the contiguous USA using

GBIF (GBIF, 2008). We compiled �200,000 observation

locations derived from real observations in the GBIF data

set, hereafter the observation pool. The distribution range of

virtual species j contained a subset of Nj records from the

observation pool. In order to mimic taxonomic bias, as it exists

in observations of real species, we selected at random 50 avian

species and recorded the number of observations existing for

them in GBIF. Each virtual species was randomly assigned a

number of observations of one of the 50 avian species (nj). For

each species j, we randomly selected nj observation locations,

out of the Nj observations located within its occurrence range.

We produced a matrix of 50 columns, denoting the 50 virtual

species and, initially, 120,670 rows (the number of grid cells in

the entire study area). Next, we deleted all empty cells from the

matrix (cells with no species present). Mean size of the full P-O

sets was 24,696 observations. As there was an order of

magnitude difference between P–A and P-O data set sizes,

we also produced partial sets of P-O data, consisting of a

random choice of 1072 rows from the P-O matrix, resulting in

P-O data sets of the same size as the P–A data sets. We

produced sets of each data type (P–A, P-O and partial P-O)

five times, independently.

Data type effect

We used canonical correspondence analysis (CCA) to examine

whether data type affects the results of analyses of the

relationships between species composition and environmental

parameters (Ter Braak & Verdonschot, 1995) using CANOCO

4.5 (Ter Braak & Smilauer, 2002). CCA is an ordination

technique that performs gradient analyses, constrained by

species composition, iteratively (Ter Braak, 1986; Legendre &

Legendre, 1998). Ordination is the simplification of a multi-

dimensional space by reducing the number of axes in this space

(Legendre & Legendre, 1998). The reduction is achieved by

extracting the major gradients from the explanatory variables,

which explain the largest amount of the variance in the

independent variable distribution, and creating axes that

represent these gradients. CCA assumes that the relationships

between environmental variables and species composition are

unimodal, rather than linear as do Principal Component

Analysis and General Linear Models (Ter Braak, 1986;

Legendre & Legendre, 1998). As the simulated species distri-

butions do not have a unimodal response to the environmental

variables, we expected the CCA will explain only a part of the

variance in the data. We applied CCA analyses to the three data

set types and compared the contribution of the various

environmental variables as explanatory variables determining

species composition. Each CCA analysis resulted in a k value

for each variable. k(x) is the proportional contribution of

variable x to the eigenvalue of the first axis. Another element of

the ordination is the relationships between the various

variables, i.e. the level of correlation and the directionality of

their effect on species composition (Ter Braak, 1986; Ter Braak

& Verdonschot, 1995). We examined the ordination diagrams

in order to qualitatively explore the relationships among the

different variables and between them and the virtual species,

within the ordination space.

Although CCA analyses are not normally repeated, and do

not require replications, we repeated the analyses five times, to

ensure the consistency of our results. Thus, we applied

univariate analysis of variance in spss (SPSS, Chicago, IL,

USA) using the different variables as covariates and the

different data types as fixed factors, to determine whether

the differences in the amount of variance explained by the

environmental variables (k values) obtained from P–A and P-

O data, both full and partial.

Bias analysis

We performed analyses on the full P-O data set and its respective

environmental data set, in order to quantify the amount of bias

in the data. We calculated the environmental bias as the

difference between values of each environmental variable in the

entire study area (contiguous USA) derived from (1) all grid

cells in the study area and (2) all the locations of the actual

observations in the observation pool (�200,000). From the

environmental bias, we also extracted spatial bias (difference in

distance to nearest urban area, as described earlier).

RESULTS

Environmental determinants of species composition

Ordination diagrams produced for each data type revealed that

environmental variables had similar effect on species compo-

sition, in all data sets regardless of data type (Fig. 2). For

example, distance to nearest urban area and altitude was

highly correlated in their effect on species composition. We

examined the effect of data type on the amount of variance

explained by each variable (k value). We expected that the

effect of distance to nearest urban area (dtu) would be less

prominent when using P-O data, because the range of values

of this variable was smaller in P-O data than in randomly
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selected locations (P–A). In contrast, our results showed that

there was no significant difference between the amount of

variance explained by this factor in the two data types

(Kruskal–Wallis ANOVA, v2 = 4.455, P = 0.108). Univariate

ANOVA, with environmental variables as covariates and data

type as a fixed factor (F = 2.553, P = 0.082, Fig. 3) showed

there was no significant effect of data type on the results of the

CCA.

Bias analysis

Mean values of minimum temperature in the coldest month,

distance to nearest urban area and altitude were lower in the

locations of the observation pool than in the entire study area.

In contrast, mean values of NDVI and annual precipitation

were higher in these locations (Fig. 4). Ranges of all variables

were similar between the sampled area and the entire study

area.

DISCUSSION

Our results show quantitatively, for the first time, that P-O

data can be used to characterize the relationships between

environmental variables and species composition. We found,

by using virtual species for which we have complete distribu-

tional information, that CCA is robust enough to identify the

main environmental drivers of species composition despite the

bias contained in such data.

Results of the CCA analyses were highly consistent, showing

similar effect of the various environmental variables on species

composition, regardless of data type. This consistency implies

that the method is not sensitive to data type, and that the bias

in the GBIF data does not significantly affect the outcome of

analyses, at least at large geographical extents.

As expected, the results only partially explained the variance

in the data, because of the non-unimodal relationships of the

simulated species with environmental variables. However, it

has been suggested that such simple representations of species

Figure 2 Three of the ordination

diagrams. In the upper left corner is an

ordination diagram of one canonical

correspondence analysis (CCA) repetition

applied to presence–absence (P–A) data

for 50 virtual species in 1072 sites. In the

upper right corner is an ordination of one

CCA repetition of presence-only (P-O)

data for 50 virtual species in �25,000 sites.

In the bottom left diagram is an ordina-

tion of partial P-O data (a subset of 1072

sites of �25,000 P-O data). Relationships

between the various variables (arrows) are

similar in all diagrams, as well as the

strength of their effects on species com-

position. Partial P-O is rotated around the

origin of the axes, yet the relationships

between the variables and the species, as

well as among the different variables are

similar to those in the P–A and P-O

diagrams.
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Figure 3 Canonical correspondence analysis k values of the dif-

ferent environmental variables. Bars are average values over five

repetitions. Error bars are standard deviations. Univariate ANOVA

showed no significant effect of data type on k values when the

different variables were used as covariates and data type as a fixed

factor (spss).
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should be used to test the robustness of ordination techniques,

such as CCA (Minchin, 1987). Our results suggest that CCA is

robust enough to give consistent results despite the violation of

the unimodal relationship assumption. We used partial P-O

data in order to account for the difference in sample size

between P–A and P-O (an order of magnitude). One might

expect that the larger amount of data in the P-O set might

compensate for its assumed relatively poor quality. Yet, partial

P-O analyses results were very similar to those of P-O,

suggesting that the amount of data had little effect on the

results. On the other hand, there might be a convergence of

P–A and P-O data at large sample sizes, as larger samples

increase the probability of absences being true rather that false

absences even in P-O data. All three data sets revealed similar

relationships between environmental variables and species

composition.

Given the disagreement among authors regarding the value

of P-O data for species distribution modelling, and the

conclusions of Ferrier & Guisan (2006) that P-O data are

insufficient for community-level modelling, our results may

seem surprising. One plausible explanation for our results is

related to the amount of information within a data set.

Analyses of species–environment relationship require dividing

the studied area into grid cells. As typically most grid cells in a

given study area are empty in P-O data sets (Ferrier & Guisan,

2006), the amount of information in the occupied cells is

crucial for the success of the analysis. When analysing data

from multiple species, each grid cell may contain data on more

than one species. The cells may thus contain more information

than in a single-species analysis. In addition, the number of

occupied cells is dependent on the number of species, because

of the larger amount of observations, as well as on the spatial

distribution of the observations in the data set. Thus, using

multiple species increases the amount of data available for the

interpretation of the species–environment relationships. This

may explain the doubts regarding P-O data for individual

species modelling, as well as our success in using P-O data for

community level analyses. We used 50 virtual species, which is

a relatively small number of species, compared to actual species

numbers found in such large areas, e.g. there are > 400

mammal species (Kays & Wilson, 2002) and > 900 bird species

(http://www.birdlist.org/usa.htm) in the contiguous USA.

Thus, analyses based on real species may be even more robust

and reflect the true species–environment relationships. The

effect of multiple species on the consistency of the results of the

analyses is apparent in our results. There are differences in the

locations of specific species in relation to the different

environmental variables in the ordination space of the various

data types, suggesting that single-species analyses may be more

sensitive than multi-species analyses to data type.

Kadmon et al. (2004) incorporated roadside bias correction

when modelling species distribution with bioclimatic models.

They concluded that such corrections should be incorporated

only posteriori to an examination of the amount of

environmental variability between near-road locations and

off-road locations. They also suggested that in an area of

small climatic variance between the road network and the

entire area, roadside survey data are appropriate without

correction. In a simulation study, Reese et al. (2005) found

that using data that contain roadside bias may produce

model results that do not differ much from models based on

systematic surveys.

Our analysis revealed that the observations in the GBIF

database indeed included environmental and geographical

biases. Observations were biased towards areas of high primary

productivity, higher annual precipitation, higher minimum

temperatures and lower altitudes. Seasonality had a small effect

on observation frequency, probably due to the relatively low

temporal resolution of the data. All the differences indicate

that observers tended to look for species in productive areas,

where conditions are relatively convenient, and avoid extreme

environments. We represented geographical bias by the average

distance from the nearest urban area, under the assumption

that observations will be concentrated closer to urban areas

than would be expected by chance. We found that the average

distance of observations to an urban area was indeed �30%

smaller than the average distance in the study area, suggesting a

strong bias towards sampling ‘close to home’. In spite of these

biases, the results of our analyses were robust and consistent.

Our findings thus confirm that easily accessible, web-based

data are indeed amenable for the study of large-scale species

composition determinants.

ACKNOWLEDGEMENTS

This project was funded by the Israel Science Foundation

(grant number 486-2010).

REFERENCES

Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel

methods improve prediction of species’ distributions from

occurence data. Ecography, 29, 129–151.

–35

–25

–15

–5

5

15

25

DTU alt
NDVI

Te
mpS

Max
T

MinT
Prec

Prec
S

Pe
rc

en
t d

iff
er

en
ce

Figure 4 Difference, in percent, between the average values of

the different environmental variables in the sampled area and

the entire study area (contiguous USA). Positive values denote

higher sample values and negative values denote higher study

area values.

R. Kent and Y. Carmel

478 Diversity and Distributions, 17, 474–479, ª 2011 Blackwell Publishing Ltd



ESRI (1999) ArcView GIS. ESRI, Redlands, CA, USA.

Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiver-

sity at the community level. Journal of Applied Ecology, 43,

393–404.

GBIF (2008) GBIF training manual 1: digitisation of history

collections data, version 1.0. Global biodiversity information

facility, Copenhagen.

Graham, C.H. & Hijmans, R.J. (2006) A comparison of

methods for mapping species ranges and species richness.

Global Ecology and Biogeography, 15, 578–587.

Graham, C., Ferrier, S., Huettman, F., Moritz, C. & Peterson,

A. (2004) New developments in museum-based informatics

and applications in biodiversity analysis. Trends in Ecology

and Evolution, 19, 497–503.

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat

distribution models in ecology. Ecological Modelling, 135,

147–186.

Hijmans, R.J., Garrett, K.A., Huaman, Z., Zhang, D.P., Sch-

reuder, M. & Bonierbale, M. (2000) Assessing the geographic

representativeness of genebank collections: the case of

Bolivian wild potatoes. Conservation Biology, 14, 1755–1765.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis,

A. (2005) Very high resolution interpolates climate surfaces

for global land areas. International Journal of Climatology, 25,

1965–1978.

Hirzel, A.H., Helfer, V. & Mertal, F. (2001) Assessing habitat-

suitability models with a virtual species. Ecological Modelling,

145, 111–121.

Kadmon, R. & Danin, A. (1999) Distribution of plant species

in Israel in relation to spatial variation in rainfall. Journal of

Vegetation Science, 10, 421–432.

Kadmon, R. & Heller, J. (1998) Modelling faunal responses to

climatic gradients with GIS: land snails as a case study.

Journal of Biogeography, 25, 527–539.

Kadmon, R., Farber, O. & Danin, A. (2004) Effect of roadside

bias on the accuracy of predictive maps produced by bio-

climatic models. Ecological Applications, 14, 401–413.

Kays, R. & Wilson, D. (2002) Mammals of North America.

Princeton University Press, Princeton, NJ, USA.

Legendre, P. & Legendre, L. (1998) Numerical ecology, 2nd edn.

Elsevier Science, Amsterdam.

Loiselle, B.A., Jorgensen, P.M., Consiglio, T., Jimenez, I., Blake,

J.G., Lohmann, L.G. & Montiel, O.M. (2008) Predicting

species distributions from herbarium collections: does

climate bias in collection sampling influence model out-

comes? Journal of Biogeography, 35, 105–116.

Minchin, P. (1987) Simulation of multidimensional commu-

nity patterns: towards a comprehensive model. Plant Ecology,

71, 145–156.

Ponder, W.F., Carter, G.A., Flemons, P. & Chapman, R.R.

(2001) Evaluation of museum collection data for use in

biodiversity assessment. Conservation Biology, 15, 648–657.

Reese, G.C., Wilson, K.R., Hoeting, J. & Flather, C.H. (2005)

Factors affecting species distribution predictions: a simula-

tion modeling experimrnt. Ecological Applications, 15, 554–

564.

Sastre, P. & Lobo, J.M. (2009) Taxonomic survey biases and

the unveiling of biodiversity patterns. Biological Conserva-

tion, 142, 462–467.

Ter Braak, C.J.F. (1986) Canonical corespondence analysis: a

new eigenvector technique for multivariate direct gradient

analysis. Ecology, 67, 1167–1179.

Ter Braak, C.J.F. & Smilauer, P. (2002) CANOCO reference

manual and CanoDraw for Windows user’s guide: software for

canonical community ordination (version 4.5). p. 500.

Microcomputer power, Ithaca, New-York.

Ter Braak, C.J.F. & Verdonschot, P.F.M. (1995) Cannonical

correspondence analysis and related multivariate methods in

aquatic ecology. Aquatic Sciences, 57, 255–289.

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R.

(2007) A comparative evaluation of presence-only methods

for modelling species distribution. Diversity and Distribu-

tions, 13, 397–405.

Yom-Tov, Y. & Kadmon, R. (1998) Analysis of the distribution

of insectivorous bats in Israel. Diversity and Distributions, 4,

63–70.

BIOSKETCHES

Rafi Kent recently graduated his PhD studies in the Depart-

ment of Civil and Environmental Engineering, in the Technion

– Israel Institute of Technology. His research interests are

patterns of biodiversity distribution from a theoretical,

empirical and conservational point of view.

Yohay Carmel is an associate professor in the faculty of Civil

and Environmental Engineering at the Technion – Israel

Institute of Technology. His research interests cover spatial

aspects of ecological and environmental phenomena, including

biodiversity, vegetation dynamics, and air pollution.

Editor: Janet Franklin

Using presence-only data to study species composition

Diversity and Distributions, 17, 474–479, ª 2011 Blackwell Publishing Ltd 479


