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Abstract. The CLC (Combined Location Classification) error model provides
indices for overall data uncertainty in thematic spatio-temporal datasets. It
accounts for the two major sources of error in such datasets, location error and
classification error. The model assumes independence between error components,
while recent studies revealed various degrees of correlation between error
components in actual datasets. The goal of this study is to determine if the likely
violation of model assumptions biases model predictions. A comprehensive
algorithm was devised to simulate the entire process of error formation and
propagation. Time series thematic maps were constructed, and modified maps
were derived as realizations of underlying error patterns. Error rate and pattern
(positive autocorrelation) were controlled for location error and for classification
error. The magnitude of correlation between errors from different sources and
correlation between error at different time steps was also controlled. A very
good agreement between model predictions and simulation results was found in
the absence of correlation in error between time steps and between error types,
while the inclusion of such correlations was shown to affect model fit slightly.
Given our current knowledge of spatio-temporal error patterns in real data, the
CLC error model can be used reliably to assess the overall uncertainty in
thematic change detection analyses.

1. Introduction

As spatial data produced via change detection analyses become more

widespread and more widely used, there is a growing need to understand the

error and uncertainties present in these datasets. These measures of uncertainty can

be used in subsequent spatial analyses and decision making to estimate reliability of

the analyses’ products (Stoms et al. 1992, Mowrer 1994, 1997, 1999, Antrop 1998,

Kyriakidis and Dungan 2001). Therefore, realistic estimates of the degree and

nature of uncertainty are becoming essential elements to accompany change

detection products (Chrisman 1991).

Error modelling has become a major means to provide spatially-explicit

information on the uncertainty of estimated parameters. Such information is
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increasingly required by data-users for evaluating the risk that a specific outcome

of further analysis of the information will be incorrect (Fisher 1998), or for

incorporating the variability of the parameters of interest into ecological and

environmental models using stochastic simulations (Phillips and Marks 1996,

Mowrer 1997, Kyriakidis and Dungan 2001).
Error in spatio-temporal data has several components, originating from

different sources. For example, thematic datasets derived from remotely sensed

data contain both location error (sometimes called positional error or misregistra-

tion) and classification errors, while radiometric errors play an indirect role only,

affecting classification error (Carmel et al. 2001). In the case of multi-temporal

datasets of the type used in change detection analysis co-registration errors are

present as well (Townshend et al. 1992, Dai and Khorram 1998, Stow 1999), but in

principle, this error is an extension of individual image location errors. The

integration of all of these components into an overall measure of uncertainty is not

trivial.

Until recently, each of these errors was measured separately. Reporting error

in this disjointed fashion makes it difficult for an analyst to grasp the overall level

of error present in the dataset. Recently, combined error models have been

developed that integrate these various error components into a single measure of

uncertainty. Two such models have been proposed for the two major types of

change detection: Stow (1999) proposed a combined error model appropriate for

change detection based on the image differencing approach, and Carmel et al.

(2001) presented a model suitable for thematic change detection, based on post-

classification analyses. Both models have a common feature, which is the

integration of the impact of misregistration on overall uncertainty. The error

model developed by Carmel et al. (2001) combines both location and classification

errors, as well as the interaction between them, to produce an estimate of the

overall error in the data. We will refer to this as the CLC (Combined Location and

Classification) model.

1.1. The CLC model

The CLC model is implemented via a five-step process:

1. For each classified image in a multi-temporal spatial dataset, a standard

classification error matrix is constructed.

2. The impact of location error on each individual classified image is then

estimated. This is accomplished by shifting each raster cell by x pixels horizontally

and y pixels vertically, where x and y represent the horizontal and vertical

components of the RMS of location error in the individual image. The resulting

map is compared to the original on a pixel-by-pixel basis. Pixels whose original

classifications differ from their predicted classifications are flagged as suffering from

locational-origin attribute errors. A location accuracy matrix, identical in form to a

conventional accuracy matrix is then constructed to describe these errors.

3. The standard classification and location error matrices described above are

combined to yield an overall error matrix (hereafter, the CLC error matrix).

Location error is assumed to precede classification error, thus the outcome of the

latter is conditioned on the former (this assumes that images are first rectified and

then classified). In order to combine the two matrices, we traced the fate of pixels

when location error and then classification error are introduced into a map. ALOC is
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the accuracy matrix for misregistration only, ACLASS for classification error only

and ABOTH for both error sources combined (see table 1 for ABOTH). Matrix cells

contain pixel counts, where i indicates the row (representing the observed image)

and j indicates the column (representing the actual image). For example, the count

n in cell i,j of ALOC represents the number of class j pixels that were assigned to

class i under misregistration. The total number of actual class j pixels is denoted by

nzj.

An interpretation of ni,j in ABOTH is more complicated. Consider n1,2 in

ABOTH—it represents the number of class 2 pixels that were assigned to class 1 due

to the combined effect of both errors. This may result from any one of three

scenarios:

(a) A class 2 pixel is assigned to class 1 due to misregistration (ALOC
1,2), there-

after correctly classified to class 1 (ACLASS
1,1). The number of pixels that

would be subject to this process is therefore ALOC
1,2 ACLASS

1,1/ACLASS nz1.

(b) Class 2 pixel is assigned correctly to class 2 in spite of misregistration

(ALOC
2,2), thereafter assigned to class 1 due to classification error

(ACLASS
1,2). The respective term for this event is ALOC

2,2 ACLASS
1,2/

ACLASSnz2.

(c) Class 2 pixel is assigned to class 3 due to location error (ALOC
3,2), thereafter

assigned to class 1 due to classification error (ACLASS
1,3). This event is

denoted by ALOC
3,2 ACLASS

1,3/ACLASSnz3.

Thus, the value for (ABOTH
1,2) is denoted by:

ABOTH
1,2~ALOC

1,2 ACLASS
1,1/A

CLASSnz1zALOC
2,2 ACLASS

1,2/A
CLASSnz2zALOC

3,2

ACLASS
1,3/ACLASS nz3.

The expected counts for the remainder of the cells in the combined matrix

ABOTH are calculated similarly (table 1 (c)).

4. The error combination process described in step (3) results in T CLC error

matrices, one for each of the T time periods in the multi-temporal dataset. For any

individual time period t, the probability that a pixel assigned to category C actually

belongs to that category is denoted by p(Ct). Congalton and Green (1999) term this

probability user accuracy. These user accuracies can be computed easily via column

summaries of the CLC error matrices.

5. Finally, errors are accumulated across time periods by computing transition

probabilities. A transition probability is simply the probability that a specific

sequence of errors (or non-errors) occurred over the T time periods involved in a

multi-temporal dataset. Thus, the transition probability that a cell that remained in

informational category C throughout all T time periods was correctly classified is

given by:

p C1C2 . . . CTð Þ~p C1ð Þ\p C2ð Þ\ . . .\p CTð Þ ð1Þ
Assuming independence of error between time steps, equation (1) becomes:

p C1C2 . . . CTð Þ~p C1ð Þ.p C2ð Þ. . . . .p CTð Þ ð2Þ
Equation (2) indicates that transition probabilities can be calculated from user

accuracies. Given that the CLC model can calculate user accuracies (using steps (1)

through (4) above), it is clear that the CLC model can be used to calculate all

possible transition probabilities. Once these transition probabilities are available,

multi-temporal cumulative error indices may be derived (Carmel et al. 2001).
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Table 1. A hypothetical matrix for a single map with three map categories. ALOC is the accuracy matrix for misregistration only, ACLASS for classification
only and ABOTH for both error sources combined. Matrix cells contain pixel counts, where i indicates the row (representing the observed image)
and j indicates the column (representing the actual image). The count n in cell i,j of ALOC represents the number of class j pixels that were assigned
to class i under misregistration. Similarly, ni,j in ACLASS is the count of class j pixels that were assigned to class i under misclassification. The total
number of actual class j pixels is denoted by nzj. After Carmel et al. (2001).

Observed (i)

Actual ( j)

1 2 3

1 ALOC
1,1 (ACLASS

1,1/nz1) ALOC
1,2 (ACLASS

1,1/nz1) ALOC
1,3 (ACLASS

1,1/nz1)
zALOC

2,1 (ACLASS
1,2 /nz2) zALOC

2,2 (ACLASS
1,2/nz2) zALOC

2,3 (ACLASS
1,2/nz2)

zALOC
3,1 (ACLASS

1,3/nz3) zALOC
3,2 (ACLASS

1,3/nz3) zALOC
3,3 (ACLASS

1,3/nz3)

2 ALOC
1,1 (ACLASS

2,1/nz1) ALOC
1,2 (ACLASS

2,1/nz1) ALOC
1,3 (ACLASS

2,1/nz1)
zALOC

2,1 (ACLASS
2,2/nz2) zALOC

2,2 (ACLASS
2,2/nz2) zALOC

2,3 (ACLASS
2,2/nz2)

zALOC
3,1 (ACLASS

2,3/nz3) zALOC
3,2 (ACLASS

2,3/nz3) zALOC
3,3 (ACLASS

2,3/nz3)

3 ALOC
1,1 (ACLASS

3,1/nz1) ALOC
1,2 (ACLASS

3,1/nz1) ALOC
1,3 (ACLASS

3,1/nz1)
zALOC

2,1 (ACLASS
3,2/nz2) zALOC

2,2 (ACLASS
3,2/nz2) zALOC

2,3 (ACLASS
3,2/nz2)

zALOC
3,1 (ACLASS

3,3/nz3) zALOC
3,2 (ACLASS

3,3/nz3) zALOC
3,3 (ACLASS

3,3/nz3)

Y
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1.2. Model assumptions

The CLC error model is based on two key assumptions: (1) location and

classification errors are independent of one another, and (2) errors in each time step

are independent of errors in other time steps. Unfortunately, one could imagine

scenarios where these assumptions would be violated. For example, steep terrain

may affect both classification and location accuracy, and thus some correlation

between location and classification error may occur. Furthermore, when a single

DEM is used to georectify all of the remotely sensed images in a multi-temporal

database, location errors might be correlated across time steps. While a recent study

failed to find evidence of the first type of correlation (between location and

classification errors within a single time period), it did find strong evidence of the

second type of correlation (between errors in different time periods, Carmel 2004).

The goal of the present study is to evaluate the CLC error model, and in

particular its adequacy under complex error patterns, in order to assess its

suitability for modelling accuracy of spatio-temporal thematic datasets.

2. Methods

2.1. Overview

The goal of this study requires full knowledge of the spatial pattern of both

error sources, and a large number of datasets. Field data are not amenable for this

aim, since error amount and pattern can not be controlled. Artificially generated

datasets were successfully used in previous analyses of error propagation in spatial

data (Goodchild et al. 1992, Haining and Arbia 1993, Mowrer 1994, Veregin 1995,

Griffith et al. 1999). The basic approach adopted for this study is based on the

evaluation of numerous spatio-temporal datasets, where the amount of error and its

spatio-temporal structure are controlled. Towards this end, the entire process of

error formation and propagation is simulated.

2.2. Creating simulated multi-temporal datasets with known error characteristics

The process of building an artificial multi-temporal dataset with a controlled,

non-random error pattern was not trivial. This section describes the principles of

this process, while further details on the structure and controls of the simulation

can be found in the appendix. We used ArcInfo’s Grid module and Arc Macro

Language (AML, ESRI 2001) to construct a 512 6 512 thematic raster map, with

each cell randomly assigned to one of three possible classes, according to pre-

determined class proportions. An iterative smoothing procedure was then applied

to the map in order to form a patchy pattern with a controlled degree of clustering

(we used a focal majority function in the Grid module of ArcInfo, and its radius

determined the degree of clustering, figure 1 (a) and (b). This map was viewed as the

‘true’ thematic map to which the remainder of the process would assign known

amounts of error.

Next, two maps were generated to represent the cell-specific probability of

suffering from a classification error and from a location error, respectively. The

probability distribution used to populate these maps, and the degree of spatial

autocorrelation among the probabilities within each map, were controlled by the

user. The degree of autocorrelation in these probability maps determined the

magnitude of error clustering (or error patchiness) in the final maps produced by

this process.

The error probability maps were then used to construct error precursor maps,
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(a)                                                              (b)

(c)                                                              (d )

(e)                                                              ( f )

Figure 1. Examples of the various steps of the simulations. (a) The ‘actual’ map for time a.
(b) A small part of the map of time a, enlarged. The rest of the images in this figure
correspond to the same area represented in figure 1(b). (c) A classification error
precursor map, used to construct the ‘classified map’, which contains a controlled
degree of classification error. (d ) Classification error map, resulting from overlaying a
user-determined proportion of the error-map (depicted in (c)) over the ‘actual’ map
(depicted in (b)). Pixels classified correctly are shown in their original colours (white,
blue and red, for classes 1, 2, and 3, respectively), while pixels classified incorrectly
are shown in orange, pink, and cyan, respectively. (e) Location error precursor map,
used to construct the ‘shifted map’, which contains a controlled degree of location
error. ( f ) Location error map, resulting from overlaying a user-determined
proportion of the location error pattern (depicted in (c)) over the ‘actual’ map
(depicted in (b)). Pixel colours are the same as in (d ).
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which in turn were used (along with the true map described earlier) to construct

final maps with known error characteristics. In the case of classification error, this

process was relatively simple. The classification error precursor map was a binary

realization (e.g. 1~an error was present, 0~no error was present) of the

classification error probability map. Combining this classification error precursor

map with the true map to create a final map containing a known amount of

classification error was a two part process:

1. For cells identified in the classification error precursor map as containing no

error, cell values were simply copied from the true map to the final

classification error map.

2. For cells identified in the classification error precursor map as containing an

error, cells values were copied from another random, patchy map. The

patchiness of this latter map controlled the spatial pattern of classification

error, regardless of class values (figure 1 (c)). In some cases, cells were

assigned back to their original values; yet this phase preceded the assessment

of error structure and amount, and thus did not interfere with the evaluation

of the model. Figure 1 (d ) portrays the final classification error map.

In the case of location errors, the process of going from the error probability to

the error precursor to the final map was somewhat more complex. Based on the

probabilities in the location error precursor map, two error precursor maps were

constructed independently, showing the amount of location error present in each

raster cell in the x and y directions, respectively. These location errors were integer

values ranging from 23 to 3 cells, and higher probabilities in the error precursor

map translated into larger location errors (figure 1(e)). These location errors were

applied to the true map by shifting cells within the true map by the cell-specific

location error amounts (figure 1( f )). In order to preclude edge effects, we did not

include image edges in the evaluation stage; 5006500 subset rasters were used for

the evaluation stage of the process.

A combined error map was then constructed by first shifting the original image,

and then introducing the classification error. The program can induce a controlled

amount of correlation between location error and classification error patterns. This

was achieved by constructing another random grid, and combining it with both the

location error probability and classification error probability maps. The products of

this process were two probability grids with a controlled degree of correlation

between them.

This algorithm is applied twice, to represent multi-temporal dataset layers from

two points in time. The true map of time b is derived from the true map of time a,

controlling for both the rate of ‘change’ and its pattern (using a change precursor

grid, similar to the error precursor grids). The program may induce correlation

between error in the two time steps, and controls for its magnitude, in the same way

as explained above for correlation between the two error types. In each simulation

run, all the relevant correlations were assessed. Moran I was used to assess

autocorrelation in the various ‘true’ and error maps. Pearson correlation coefficient was

used to estimate correlation in error between points in time and between error types.

2.3. Experimental design and analysis

As a preliminary test, the robustness of the CLC error model was tested for

correlation-free error structure. The following parameters were varied in a set of 50
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simulation runs: number of map classes, proportion of each class, and rate of error

of each type. Model performance in each simulation was recorded (for details on

model assessment, see below).

Monte Carlo methods are typically used for stochastic simulations. In our

simulations, where all the relevant parameters are pre-determined, there is little

stochasticity. When simulations are run several times with all parameters kept

constant, results differ from each other by v1023. Using Monte Carlo would yield

little gain in information on the magnitude of deviance between model predictions

and simulation results, and we chose not to use it.

In order to assess model performance under complex error pattern,y200

simulated datasets were constructed, as unique combinations of the following

parameters:

1. amount of location error (from 23 to z3 pixels in both the x and y

directions).
2. amount of classification error (percent classified correctly (PCC) from 0.5 to

0.99).

3. degree of spatial autocorrelation within each type of error (Moran I from

0.05 to 0.95)

4. degree of spatial correlation between location and classification error

(Pearson coefficient between 0 and 0.6).

5. degree of correlation in error between time steps (Pearson coefficient between

0 and 0.8).

Each simulated multi-temporal dataset was evaluated against an analytical

solution counterpart. Location, classification, and combined error matrices were

constructed using the equations shown in table 1. Values in these error matrices and

the CLC model were used to compute the model-prediction of the probability of

each transition type p(C1C2
…CT) to be correct. As a reference, the respective

‘observed’ (in simulation) probabilities were computed by comparing the final

error-laden maps to the ‘true’ maps. We defined D as an index of deviance between

the observed (in simulation) and predicted (by the model) transition probabilities:

D~ p C1C2 . . . CTð Þobserved
{p C1C2 . . . CTð Þpredicted

�
�
�

�
�
� ð3Þ

For each simulation run we calculated the average deviance (Davg) and

maximum deviance (Dmax) across all transition types. In the present study, three

classes and two time steps yielded nine transition types for each simulation, thus

Davg was calculated as the average of nine values and Dmax was the maximum of

nine values.

Multiple regression analyses were used to assess the impact of correlation

between error sources and of error rate on model performance. Davg was the

dependent variable, and the correlation between the two error sources in a single

time step, correlation between error in different time steps, and error rate were the

independent (predictor) variables.

3. Results

3.1. Reference

As a form of reference, we simulated situations where classification and location

error were uncorrelated, as were errors between time periods, conforming to the

assumptions of the CLC model. A very good agreement between model predictions
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and simulation results was found in the absence of correlation in error between time

steps or between error types (Davg did not exceed 0.002, and Dmax did not exceed

0.01). These results were consistent for different numbers of classes (2–4), for

various proportions of each class (between 0.01 and 0.99), and for both low and

high levels of error of each source (PCC values ranged between 0.5 and 0.99).

3.2. Correlation between location and classification errors in a single time step

Introducing correlation between the two sources of error affected the fit between

model predictions and simulation results significantly. This deviation increased with

the rate of correlation between error sources (figure 2). It was also affected by both

location error rate and classification error rate. For equal values of correlation

between error types, larger error rates in the simulation resulted in larger differences

between model predictions and simulation results (note that in the absence of such

a correlation, model fit was not affected by error rate). The largest reduction in

model fit occurred when the largest errors from both sources (PCCy0.4) coincided

with strong correlation between these sources (y0.6). In those cases Davg reached

0.015, while Dmax reached 0.056 (figure 2).

The regression analyses revealed a significant impact of correlation between

error types on model fit (with Davg as the dependent variable). In a univariate

analysis, with correlation between location error and classification error as the sole

predictor, a strong effect on the dependent variable was obvious (R2~0.77,

pv0.001). When error rates of both sources for both time steps were added to the

regression model in a stepwise forward procedure, all variables had a significant

effect on the dependent variable (adjusted R2~0.91, pv0.001).

Figure 2. The ¤ average and # maximum difference in transition probabilities between
simulation results and the error model, as a function of the correlation between
location and classification error patterns. Pearson coefficient is used to estimate
correlation between error types.
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3.3. Correlation between error patterns in time a and time b

Effects of correlation between error pattern in time a and time b were very

small, but significant (figure 3(a) and (b), for location and classification error,

respectively). The overall agreement between model predictions and simulations

was high. Even when the correlation coefficient between attribute errors in the two

time steps was as high as 0.8, Davg never exceeded 0.003, and Dmax did not exceed

0.012.

Figure 3. Maximum difference in transition probabilities between simulation results and the
error model, as a function of correlation between error pattern in time a and time b,
for (a) location error (R2~0.27, pv0.05, and (b) classification error (R2~0.56,
pv0.01). Pearson coefficient is used to estimate correlation between error in time a
and in time b.
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3.4. Effects of the spatial pattern of a single error source.

As expected, the model was found to be insensitive to the rate of autocorrelation

(clustering) in error pattern for both error types. Davg was below 0.002 in all

simulations, regardless of error pattern (Moran I values for error pattern ranged

from 0.25 through 0.95).

4. Discussion

The CLC error model was designed to produce indices of overall data

uncertainty in multi-temporal datasets used in thematic change detection analyses.

The CLC model assumes independence between location and classification errors

within each data layer, and independence of errors between data layers. This study

assessed the CLC model reactions to departures from these assumptions. The CLC

error model was found to be a precise descriptor of overall error when both the

location error and classification error in the multi-temporal data are essentially

randomly distributed. It was also found that the CLC model was insensitive to

spatial autocorrelation of either location error, classification error, or both, within

any single data layer. This finding, albeit expected (since autocorrelation of this

type does not violate any of the CLC model’s assumptions), is important since

strong positive autocorrelation in error pattern was reported previously for both

location error (Pugh and Congalton 2001) and classification error (Cherrill and

McClean 1995).

The CLC model did react to correlation between errors in different time steps.

The CLC model assumes that the error probability for a specific location (i,j) in a

specific time step is independent of error probabilities at the same location in other

time steps (see equation (2)). This study shows that the CLC model was sensitive to

violations of this assumption. Thus, correlated errors of this type may, in principle,

induce some uncertainty on the accuracy estimates produced by the model.

However, it was also found that the magnitude of the problems caused by this type

of correlation was minor, and for practical purposes, it is negligible.

Finally, this study evaluated how the CLC model reacts to correlations between

location and classification error within an individual data layer. Correlations of this

sort clearly violate the CLC assumptions, so it was expected that the CLC model

would react to these types of correlation. The results of this study showed that for

correlation values v0.2, model performance was practically unaffected. However,

for larger degrees of correlation, model performance was reduced more notably.

For datasets with strong correlation between error types, the accuracy estimates

produced by the model may be uncertain. For an entire dataset, the actual error

estimate would differ by ¡1.5% of the true value, while for specific transition types,

this estimate may go up to ¡5% of the actual value, in the case of the strongest

possible correlation between error types.

A recent study (Carmel 2004) found that correlations between location and

classification errors were less than 0.17, and insignificant, in all the five real-world

datasets studied. This implies that in most actual situations, the CLC model is

unlikely to suffer badly from correlations of this sort.

5. Conclusions
The CLC error model describes the overall error in spatio-temporal data,

combining effects of image misregistration and classification error. It was found

accurate and robust, insensitive to the magnitude and pattern of images, and to the

magnitude of pattern of error, for uncorrelated error sources. The model assumes
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independence between error types, and independence between error at different

times. Violations of these assumptions are shown to affect the model. However, the

small magnitude of these effects renders them negligible for practical purposes.

Given our current knowledge on spatio-temporal error patterns in real data, the

CLC error model can be applied reliably to spatio-temporal datasets.

Appendix. The simulation

This appendix contains details and explanations regarding the simulations.

The general structure of the simulation is described first, followed by descriptions of

the controls that the user has on the various parameters of the simulation.

A1. The simulation structure

1. Define a grid to serve as the template for the simulation (in this case, a

5126512 pixels image.

2. Create a simulated grid (hereafter ‘time_a’) that serves as the ‘true’ map for

the first time-point in the simulation.

3. Modify ‘time_a’ to simulate the change in the scene with time. Construct

‘time_b’, as the ‘true’ map for the second point in time.

4. Modify ‘time_a’ to simulate location error that remains in the maps

following georectification (‘loc_err_a’).

5. Modify ‘time_a’ to simulate classification error present in the map

(‘class_err_a’).

6. Modify ‘time_a’ to simulate the observed map that combines both error types

(hereafter, ‘observed_a’). This is done by inducing location error (as in step

[4]), and then inducing classification error into the map (as in step [5]).
7. Repeat steps [4]–[6] for ‘time_b’, to construct ‘loc_err_b’, ‘class_err_b’ and

‘observed_b’, respectively.

8. Calculate the simulation CLC error matrices and transition probabilities, and

compare with the respective values calculated using model equations.

A2. The simulation controls

1. Controlling the number of classes and the proportion of each class in the

original grid (‘a’). A random function constructs a grid of 100 classes,

with equal proportions of each class. Then, a conditioning function, based

on threshold values, lumps these 100 percentiles into the desired number

of classes, with the desired proportion for each class.

2. Controlling the pattern of the original grid. A focal majority function operates

on a random grid, and constructs a ‘patchy’, clustered grid. The magnitude

of clustering depends on window size. This process controls the autocorrela-

tion in the image (more clustered image implies stronger autocorrelation).

Moran I is used to quantify the autocorrelation in each image.

3. Controlling the magnitude of change between time steps. The simple and

common way to induce change in spatial simulations is to randomly choose

pixels for modification, and randomly choose a different class value to assign

to the modified pixels. However, this random change is unrealistic, and

results in a map with a more fragmented pattern than the original. The

challenge is to modify class values of a specified proportion of the pixels in

the original grid, while conserving the spatial pattern of the map. In our

simulation, this goal is achieved using an alternative grid ‘alt_a’, constructed
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similar to the original, with the same class proportions and pattern, but

based on a different random grid. Each pixel in the ‘time b grid’ is assigned

the value of either ‘a’ or ‘alt_a’, based on a threshold function coupled to a

precursor grid. The precursor itself may be a clustered grid (similar to

‘time_a’), resulting in a non-random spatial pattern of change.

4. Controlling location error magnitude and pattern. The simple way to induce

location error is to shift the entire grid by a specific distance on each axis.

However, in order to create a more realistic pattern for location error, the

extent of the shift needs to vary across the image. Towards this end, two

precursor grids are used, ‘x_loc_err_precursor’, and ‘y_loc_err_precursor’,

containing the pixel-specific shift in the x and y directions, respectively. These

two precursor grids have their own spatial pattern that determines the spatial

pattern of location error. They are constructed in the same way as the

original grid (see items #1 and #2), only with a different range of values. The

location error grid is produced by shifting each pixel in the original grid by

the extent specified by the precursor grid.

5. Controlling classification error magnitude and pattern. Here, the challenge is

to modify class values of a specified proportion of the pixels in the original

grid, while controlling the spatial pattern of the modified pixels. This is

achieved in a similar way to the construction of the ‘time_b’ grid (see item

#3). An alternative grid ‘alt_a’, is constructed similar to the original ‘time_a’,

with the same class proportions and pattern, but based on a different random

grid. Each pixel in the classification error grid is assigned the value of either

‘a’ or ‘alt_a’, based on a threshold function coupled to a random grid of

error probability, ‘class_err_prob’. The error probability map itself has a

clustered pattern (constructed similar to ‘time_a’), resulting in a non-random

spatial pattern of classification error. The autocorrelation in the classification

error pattern is also controlled by the user, via the extent of clustering in the

error probability map.

6. Controlling the correlation between error from different types. This sort of

correlation is achieved by constructing the ‘class_err_precursor’ grid as a

modified product of the ‘loc_err_precursor’ grid. The degree of modification

determines the degree of correlation between the different error types.

7. Controlling the correlation between error in different time steps. Correlation in

error between the two time steps is induced by deriving the error grids in

both time steps from a common precursor. The degree of this correlation is

controlled by the degree to which the common precursor is modified in the

process of constructing the error maps for each point in time.
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