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Summary. We estimate the relation between binary responses and corresponding covariate vectors, both
observed over a large spatial lattice. We assume a hierarchical generalized linear model with probit link
function, partition the lattice into blocks, and adopt the working assumption of independence between the
blocks to obtain an easily solved estimating equation. Standard errors are obtained using the “sandwich”
estimator together with window subsampling (Sherman, 1996, Journal of the Royal Statistical Society, Series
B 58, 509–523). We apply this to a large data set describing long-term vegetation growth, together with
two other approximate-likelihood approaches: pairwise composite likelihood (CL) and estimation under a
working assumption of independence. The independence and CL methods give similar point estimates and
standard errors, while the independent-block approach gives considerably smaller standard errors, as well as
more easily interpretable point estimates. We present numerical evidence suggesting this increased efficiency
may hold more generally.
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1. Introduction
Many applications require modeling binary variables Yi , ob-
served at points in a spatial lattice, in terms of corresponding
vectors of explanatory variables; often the points are regu-
larly spaced and represent small areas or volumes. As exam-
ples, Albert and McShane (1995) model the presence of lesions
at different locations in the brain; Heagerty and Lele (1998)
examine defoliation in different grid cells within a geograph-
ical area; Weir and Pettitt (2000) study the presence of the
Finnish common toad in different squares of the Finnish na-
tional grid; and Pettitt, Weir, and Hart (2002) analyze forest
biodiversity data. Our application relates the predominance
of trees in grid cells within a region of natural forest to envi-
ronmental and anthropogenic variables measured at the cells.

One may model spatial dependencies among the Yi using
a hierarchical generalized linear model (Clayton and Kaldor,

1987; Breslow and Clayton, 1993; Waller et al., 1997; Diggle,
Tawn, and Moyeed 1998), in which the Yi are conditionally
independent, given a latent Gaussian field defined on the lat-
tice. Dependence among the Yi then arises from dependence
among the components of the field.

Bayesian estimation may be carried out using Markov
chain Monte Carlo to approximate the posterior distribu-
tions (Besag, York, and Mollie 1991; Waller et al., 1997;
Diggle et al., 1998; Weir and Pettitt, 2000; Christensen
and Waagepetersen, 2002; Pettitt et al., 2002; Christensen,
Roberts, and Skold 2006). For a non-Bayesian analysis, max-
imum likelihood estimation is computationally prohibitive
for moderately large lattices; hence, a number of approxi-
mate likelihood methods have been proposed. In particular,
Heagerty and Lele (1998) used a composite likelihood (CL)
approach (Lindsay, 1988) to approximate the log-likelihood
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function by a sum of pairwise log-likelihoods. Standard errors
were estimated using the “sandwich estimator,” together with
window subsampling (Sherman, 1996) to estimate the co-
variance matrix of the estimating function. As a computa-
tionally simpler (but less efficient) alternative, Heagerty and
Lumley (2000) proposed modeling the marginal probabilities
P(Yi = 1) assuming independence, while estimating standard
errors as in Heagerty and Lele (1998); this is similar to the
independence estimating equation (IEE) approach of Zeger
and Liang (1986) and Liang and Zeger (1986).

The approach we present here is in the spirit of the gener-
alized estimating equations (GEE) of Zeger and Liang (1986)
and Liang and Zeger (1986), and was in part motivated by
computational difficulties in applying Heagerty and Lele’s
(1998) CL method to our set of vegetation data. Assuming a
probit link function, we construct an estimating equation with
a “working covariance matrix” based on dividing the lattice
into disjoint blocks and assuming independence between the
observations in different blocks; hence, the matrix is block-
diagonal. We choose the blocks sufficiently large to reflect the
underlying covariance structure, while still allowing inversion
of the corresponding covariance matrices. Within each block,
we use Pearson’s (1901) approximation to the true covariances
of Y when an explicit covariance function is assumed for the
latent Gaussian field. The approximation involves the stan-
dard normal probability density function and cumulative dis-
tributive function, and does not require computing bivariate
normal integrals. The covariance function of the underlying
field is modeled parametrically and estimated using a sep-
arate estimating equation. The resulting independent-block
estimating equation (IBEE) for the regression vector is easy
to program and solve; the covariance of the resulting esti-
mator is estimated as in Heagerty and Lele (1998) using the
sandwich estimator and window subsampling.

In the next section our model and method are defined, while
Section 3 states the asymptotic properties of the resulting es-
timator. In Section 4, we compute the IBEE estimate for a
moderately large set of 6000 points, together with the IEE
and CL estimates. The IEE and CL methods give essentially
the same point estimates and standard errors, while the IBEE
estimated standard errors are considerably smaller. The IBEE
point estimates differ as well, and lead to qualitatively differ-
ent (and more easily interpretable) conclusions than obtained
using IEE or CL. In Section 5, we present numerical evidence
suggesting that the IBEE estimator may be more efficient in
other cases as well. Section 6 concludes with a brief discussion.
Web Appendix A gives the proofs of the results of Section 3,
while Web Appendix B contains the software code used for
the computations in Section 4.

2. Statistical Model and Estimation Technique
Let S = {s1, . . . , sN } denote the lattice, with xi the vector
of covariate values observed at si , and denote the distance
between two points si and sj by ‖si − sj ‖. As in Heagerty
and Lele (1998), we assume a hierarchical generalized linear
model having a latent zero-mean Gaussian field Z∗ = (Z∗

i )
defined on the lattice, with var (Z∗

i) ≡ τ 2 and a continuous
isotropic covariance function cov (Z∗

i , Z
∗
j) = c(‖si − sj ‖).

Conditional on Z∗, the Yi are independent, with

g[P (Yi = 1|Z∗)] = xT
i γ + Z∗

i , (1)

where g is the probit link function and γ gives the conditional
effects of the covariates. Because equation (1) is equivalent to
Yi = 1{Wi−Z∗

i
≤xT

i
γ}, where the Wi are N(0, 1) variables inde-

pendent of one another and of Z∗, we obtain the unconditional
probabilities

pi ≡ P (Yi = 1)
= P (Zi ≤ ηi),

(2)

where the Zi are correlated latent N(0, 1) variables and ηi
=xT

i β for a regression vector β = (1 + τ 2)−1/2 γ, which now
gives global effects. Similarly, we obtain

cov(Yi, Yj) = P (Zi ≤ ηi, Zj ≤ ηj) − pipj . (3)

The latent field Z has an isotropic correlation function

ρ(‖si − sj‖) =

{
1, ifsi = sj

c(‖si − sj‖)/(1 + τ 2), if si 
= sj . (4)

Because lim d→0 ρ(d) = τ 2/(1 + τ 2), there is a “nugget effect”
(Matheron, 1962) of 1/(1 + τ 2).

Forming the N × p matrix X of covariate values and ar-
ranging the Yi and pi into corresponding N-vectors Y and p
=p (β), the optimal moment-based estimating equation for
β is

DT cov−1(Y){Y − p(β)} = 0, (5)

where D = ∂p/∂β. Equivalently, denote Φi = Φ(ηi ) and Φi

= φ(ηi), where Φ and φ are the standard normal Cumulative
distributive function and probability density function, let

fi = φi/{Φi(1 − Φi)}1/2 (6)

and define the N × N matrices

H = H(β) = diag(φi), F = F(β) = diag(fi). (7)

Then, as D =HX and var (Yi ) = Φi(1 − Φi), we may write
equation (5) in terms of correlations as

XTFcorr−1(Y)FH−1{Y − p(β)} = 0. (8)

Because inverting corr (Y) is infeasible for large N, we in-
stead construct a “working correlation” matrix by partition-
ing the lattice into subsets or blocks B1, . . . , Bm of contiguous
sites and assuming independence between Yj and Yk if sj and
sk are in different blocks. For sites sj and sk within the same
block, we use Pearson’s (1901) approximation to the covari-
ances implied by equations (3) and (4),

cov(Yj , Yk) ≈ φjφk arcsin{ρ(‖sj − sk‖)}, (9)

and replace ρ in equation (9) by a parametric working corre-
lation function rα, assumed to be isotropic and continuous in
α. For example, graphical analysis of the data in Section 4
suggested the choice

rα(d) =

{
1, if d = 0
α1α

d
2 , if d > 0.

(10)



Analyzing Spatially Distributed Binary Data Using IBEE 3

This gives working correlations

ajk =

{
1, j = k

fjfk arcsin{rα(‖sj − sk‖)}, j 
= k
(11)

when sj and sk are in the same block. Assuming the obser-
vations in the vector Y have been grouped according to the
blocks B1, . . . , Bm , let

A = A(β,α) = diag(A1, . . . ,Am) (12)

denote the resulting block-diagonal working correlation ma-
trix, with each Ai having entries as in equation (11). Replac-
ing corr(Y) in equation (8) by our working correlation matrix
and normalizing by N then gives the estimating function

UN (β,α) =
1

N
XTF(β)A−1(β,α)F(β)H−1(β){Y − p(β)}.

(13)

As in Liang and Zeger (1986), we may solve UN (β, α) =
0 by a modified Fisher scoring algorithm in which at each
iteration we differentiate equation (13) only with respect to β
in p(β). Because A is block diagonal, the update at the j th
step is of the form

βj+1 = βj + {
m∑
i=1

(XT
i FiA−1

i FiXi)}−1

m∑
i=1

XT
i FiA−1

i FiH−1
i {Yi − pi(βj)}; (14)

here Hi, Fi, Xi, and pi are submatrices corresponding
to block i, all evaluated at the current βj , while Ai

is evaluated at βj and α. Equation (14) is simple to
program, and computation is quick for appropriate block
sizes.

In practice we replace α in equation (13) by α̂N , a consis-
tent estimate of α. (More precisely, as α is a “working pa-
rameter,” we require that {α̂N} be statistics which converge
in probability to a constant α0.) To compute α̂N we form the
squared differences Wjk ≡ (Yj − Yk )

2; from equation (9) we
have

E(Wjk) ≈ Φ(ηj) + Φ(ηk) − 2φ(ηj)φ(ηk)

arcsin{rα(‖sj − sk‖)} − 2Φ(ηj)Φ(ηk). (15)

Replacing the ηi by η̂i = xT
i β̂ for an appropriate estimate β̂,

we may use equation (15) to construct an estimating equation
for α.

3. Asymptotic Properties
Let β̂N denote a solution to UN (β, α̂N ) = 0. Consistency of
α̂N , as discussed preceding equation (15), allows us to show
that under appropriate conditions, similar to those of Hea-
gerty and Lele (1998) and Heagerty and Lumley (2000), β̂N

is consistent and asymptotically normal as N → ∞. More
precisely, if β0 denotes the true value of β, if α̂N → α0 in
probability and if we define VN = covβ0{UN (β0,α)}, then

N 1/2V−1/2
N DN (β̂N − β0) converges in distribution to a N(0, I)

variable, where VN is evaluated at α0 and

DN = N−1XTF(β0)A
−1(β0,α0)F(β0)X.

The proof of this result, together with a precise statement
of the required conditions, is in Web Appendix A. The proof
uses asymptotic results of Crowder (1986), Doukhan (1994),
and Guyon (1995) for random fields.

We then estimate the covariance matrix of N
1
2 βN using the

“sandwich” estimator

ˆcov(
√
N β̂N ) = [DU(β̂N , α̂N )]−1

[ ˆcovU(β,α0)][DU(β̂N , α̂N )]−T . (16)

As no replicates are available to estimate the inner part of the
sandwich, we follow Heagerty and Lele (1998) and Heagerty
and Lumley (2000), in using the window subsampling method
of Sherman (1996). This approach estimates cov (U) using a
rescaled average of Uk(β̂, α̂)Uk(β̂, α̂)T , where the estimating
functions Uk are computed over subsampled windows Sk of
the research region.

4. An Application
To illustrate, we now analyze factors affecting long-term
changes in tree cover in a 1125 m × 1200 m region of nat-
ural forest in the Galilee mountains of northern Israel, us-
ing binary grid maps available for 1964 and 1992. Each
15 m × 15 m grid cell in the maps was classified as “tree”
or “nontree” based on image processing of aerial photographs
(Carmel and Kadmon, 1999). We define Yi = 1 if site si was
a tree cell in the 1992 map. The percentage of cells in which
trees were the dominant growth form increased from 1% in
1964, to 70% in 1992 (Figures 1a and 1b). Ecological consid-
erations suggested that these changes were influenced by both

Figure 1. Observed values of tree dominance (black) and
nondominance (white), together with fitted values using the
independence and independent-block estimators. Scale is in
units of 10 m; each pixel is 15 m × 15 m.
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initial vegetation conditions and various cell-specific environ-
mental and anthropogenic factors present during the 28-year
period, which we model using the following variables: tree.64
is an indicator variable for tree dominance in 1964; alt (100 m)
is elevation above sea level; str.dist (km) is the distance to the
nearest stream bed; rd.dist (km) is the distance to the near-
est road; slope is the slope (on a scale from 0 to 1); ns.aspct
gives the north–south component of the aspect (N = 0/360,
S = 180/360); and ew.aspct gives the east–west component
(E = 90/360, W = 270/360). As aspect and slope together
affect the exposure of the cell to both precipitation and solar
radiation, we also include the interaction terms ns.slope and
ew.slope. The entire study region was fenced into separate ar-
eas for grazing (including one area in which grazing was not
permitted), so we also include indicator variables for the type
of grazing (goat or cattle) and the intensity (sporadic, mod-
erate, or heavy; see Carmel and Kadmon [1999] for precise
definitions).

Using model (2), we first computed β̂ind, the estimate of β
under independence, by using standard probit regression (all
computations were done in S-plus). We obtained standard
errors using subsampling of all overlapping windows of size
20 × 22 (see the Discussion). A directional variogram (not
shown) of the Pearson residuals from the probit fit showed no
evidence of anisotropy. To explore the form of the covariances
on the latent scale, we divided the unit interval into eight
equal-sized subintervals. For two such subintervals I and J,
and for a given distance d, let η̂i = xT

i β̂ind and

c(I, J, d) =
sample covariance of {(Yj , Yk) : Φ(η̂j)

∈ I,Φ(η̂k) ∈ J, ‖sj − sk‖ = d}.

Figure 2. Empirical correlogram (on latent scale), together with fitted curves. Solid line is lowess fit; dashed line is
least-squares fit cor (d) = 0.66 (0.77)d for d > 0.

If φL denotes the sample mean of {φ(η̂l) : Φ(η̂l) ∈ L} and
we define the empirical correlation on the latent scale to be
sin {c(I, J , d)/(φIφJ)}, we see from equation (9) that this
estimates ρ(d). A lowess fit to the graph of these empirical
correlations versus d (Figure 2) suggested the exponential
working correlation function (10); using least squares we
obtained

rα̂(d) = 0.66(0.77)d. (17)

For convenience of interpretation we shall write α as (σ2, ρ).
For the IBEE estimate β̂IBEE we first partitioned the 80 ×

75 lattice into blocks Bi of size 16 × 15, the largest easily pro-
grammable block size for which inversion of the corresponding
covariance matrices was feasible. As the estimated maximal
correlation (using equation (17)) between a point in the cen-
ter of any Bi and points not in Bi is at most 0.66 (0.77)8 =
0.08, this block size should capture much of the covariance
structure. To estimate the working covariance parameters we
transformed them to θi = logit (αi) and used (15) to construct
an estimating equation analogous to equation (5). We formed
a vector w comprising all Wjk corresponding to points sj and
sk separated by at most dmax = 5 units in both the horizontal
and vertical directions (thereby including all pairs with pre-
liminary estimated correlations as low as 0.66 (0.77)5 = 0.18),
and used diag {var (wi )} in place of cov (w) as a working co-
variance matrix. As the covariance parameters in equation
(10) are not identified if either is zero, we used a small ridge
parameter in the least-squares updates in order to keep the
θi bounded. We then computed β̂IBEE and a final estimate of
(σ2, ρ) by alternating between the one-step iteration equation
(14) and a one-step iteration for equation (15), with β̂ind and
(0.66, 0.77) as starting values. After eight iterations (taking
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Table 1
Results using independence, CL and IBEE

Coefficient estimate Standard error p-value

Variable Ind Cl IBEE Ind Cl IBEE Ind Cl IBEE

const −18.06 −18.38 −12.63 4.88 4.04 3.12 0.00 0.00 0.00
tree.64 1.16 1.35 0.55 0.27 0.27 0.27 0.00 0.00 0.05
alt 2.12 2.20 1.65 0.53 0.38 0.40 0.00 0.00 0.00
str.dist −2.44 −3.16 −3.18 1.76 1.60 1.62 0.16 0.05 0.05
rd.dist 0.96 0.85 0.48 0.60 0.49 0.44 0.11 0.09 0.27
g.spor −0.57 −0.61 −0.06 0.27 0.29 0.43 0.04 0.04 0.89
g.mod −1.00 −0.96 −0.77 0.32 0.33 0.24 0.00 0.00 0.00
c.spor 0.53 0.54 −0.23 0.27 0.28 0.19 0.05 0.05 0.23
c.mod −0.94 −0.92 −0.61 0.28 0.25 0.25 0.00 0.00 0.02
c.heavy −1.66 −1.70 −0.79 0.44 0.39 0.23 0.00 0.00 0.00
ns.aspct 0.48 0.20 0.00 1.05 1.05 0.61 0.65 0.85 1.00
ew.aspct 0.98 0.99 −0.71 1.16 1.08 0.33 0.40 0.36 0.03
slope 4.27 2.91 0.94 4.17 4.16 1.85 0.31 0.48 0.61
ns.slope −19.10 −17.65 −14.87 6.33 6.65 4.82 0.00 0.00 0.00
ew.slope 11.87 12.67 11.72 8.02 7.89 2.90 0.14 0.11 0.00

several minutes on a Sun Solaris Unix server, OS 5.9), we
obtained

σ̂2 = 0.85, ρ̂ = 0.94, (18)

and β̂IBEE. Standard errors were obtained as for β̂ind, by sub-
sampling windows of size 29 × 31.

Table 1 contains the IEE and IBEE results, together with
estimates previously obtained by V. Landsman (2000) using
CL. These were based on the sum of pairwise log-likelihoods
Ujk for all pairs j, k up to a distance of 13 apart. As this in-
volved on the order of 106 summands, each involving a bivari-
ate normal integral, computations became feasible only after
writing a number of C-plus routines which were called from
within S-plus; the iterations then required several hours. The
CL estimates and standard errors for σ2 and ρ were 0.70(0.59)
and 0.81(0.07).

In Table 1 we see that the CL and IEE point estimates and
standard errors are quite similar. The IBEE standard errors,
on the other hand, tend to be smaller: in fact, the ratio of
IBEE to IEE standard errors, averaged over the coefficients,
is 0.73 (as opposed to 0.95 for the corresponding CL to IEE
ratio).

We focus therefore on comparing the IBEE and IEE results.
Both methods give coefficient estimates with expected signs
for tree.64, rd.dist, str.dist, and alt (we expect greater tree
cover for sites at higher elevations because they generally get
more precipitation, and are also more remote and thus less
prone to human disturbance).

However, the p-values of the two methods in Table 1 lead
to different conclusions regarding the effects of road construc-
tion and sporadic grazing. The IEE estimate finds road dis-
tance marginally significant, while it is not so using the IBEE
results. Also, sporadic grazing by goats or cattle has no sig-
nificant effect on tree cover, according to the IBEE estimate;
whereas both types of grazing do have an effect, according to
the IEE estimate. Moreover, the IEE results lead to the con-
clusion, difficult to interpret ecologically, that sporadic graz-

ing by cattle (as opposed to no grazing) actually increases tree
cover.

Regarding slope and aspect, let p∗(aspect, slope) denote
the probability that Y = 1 for a site with given slope and
aspect, when the covariates not depending on slope or aspect
are set to their mean values over the region. Figure 3 graphs
the estimated p∗ versus slope (the range of slopes in the re-
search area was 0.0 to 0.35), together with (nonsimultaneous)
95% confidence limits, for the IEE and IBEE estimates and
for northern, southern, western, and eastern aspects; observe
that the IBEE envelopes are tighter than for IEE. To un-
derstand these graphs, we note that prevailing winds during
rainfall in the research area come from the west and south-
west (Arazi et al., 1997; Sharon and Arazi, 1997). Thus slopes
with a western aspect tend to receive more rainfall than east-
ern slopes, leading to greater tree cover; moreover, as aspect
together with slope affect the exposure to the slanting precip-
itation, this difference should increase as the slope increases.
This is reflected in the curves in both Figures 3c and 3d.
Both estimates also indicate that northern aspects are more
favorable than southern to tree cover (Figures 3a and 3b). A
likely explanation for this is that southern-facing slopes gen-
erally receive more sunlight, thereby leading to higher rates
of evapotranspiration.

As a measure of overall fit, the estimates p̂i using both
methods are plotted in Figures 1c and 1d. The IBEE plot is
much more graduated, because by accounting for correlations
at the estimation step the estimator gives less weight to spa-
tially contiguous groupings of identical Y values than does the
IEE estimator; consequently their predictions are “shrunk”
away from 0 and 1. A plot (not shown) of CL predictions was
virtually identical to Figure 1c.

An appropriate measure of overall fit is (Y − p̂)T

cov−1(Y)(Y − p̂)/(N − p), but computation is infeasible. Re-
placing cov (Y) by diag(p̂i/{1 − p̂i}) gives the normalized
Pearson’s χ2 (equal to 4.47, 6.87, and 0.87, respectively, for
the IEE, CL, and IBEE estimates), but this is inappropriate as
it ignores the spatial correlation in Y. Choosing a rectangular
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Figure 3. Estimated probability of tree dominance as a function of slope and aspect, when remaining covariates are set
to their mean values, using independence and independent-block methods. Northern (solid line) and southern (dashed line)
aspects are shown in (a) and (b); western (solid line) and eastern (dashed line) are shown in (c) and (d). Dotted lines give
(nonsimultaneous) 95% confidence limits.

subset of 56 lattice points si that are 10 units apart in the hori-
zontal and vertical directions (so that, using equations (9) and
(18), the correlation among the corresponding Yi should be
at most 0.33) and computing the corresponding normalized
Pearson’s χ2 gave respective values of 1.51, 1.73, and 1.18,
indicating a better fit using independent blocks.

5. Efficiency
In our application the IBEE estimator appeared to be more
efficient than both IEE and CL; we now present numerical
results suggesting this may hold in a more general context as
well. Assume that β is a scalar and cov (Y) is known. If β̂ is
defined through the estimating equation

aT {Y − p(β)} = 0, (19)

for a ∈ �N , then as with (16) a Taylor expansion gives its
asymptotic variance as aT cov (Y) a/(aT Hx)2 with H defined
in equation (7). Defining c = (ci ) = ([Φi {1 − Φi} ]1/2 ai ) and
u = (φi xi/[Φi {1 − Φi} ]1/2), we may rewrite the variance as

cTRc
(cTu)2 , (20)

where R = corr (Y). A standard eigenvector argument shows
that equation (20) achieves its minimum value, varopt = (uT

R−1 u)−1 , when c =R−1u, corresponding to a = cov−1 (Y) (φi

xi ). For the IEE estimator β̂ind,a = diag−1(Φi{1 − Φi})(φixi),
giving varind =uTRu(uT u)−2; while the IBEE estimator that
takes the subvectors Y(j) of Y to be independent has varIBEE

= uT R̃−1RR̃−1u(uT R̃−1u)−2 for R̃ = diag{corr(Y(j))}. If the

CL estimator β̂cl is defined as the solution to∑
‖si−sj‖≤d

Uij(β) = 0, (21)

where each Uij is the pairwise score function(
φixi
φjxj

)T

cov−1

(
Yi

Yj

)(
Yi − pi(β)
Yj − pj(β)

)
,

then straightforward, albeit tedious computations give an
explicit expression for a which enables us to write equa-
tion (21) as (19). We may then use (20) to compute varcl

numerically.
In our calculations we have taken cov (Yi , Yj ) to be given

(exactly) by equation (9), for an exponential correlation func-
tion ρ(t) = σ2ρt. It is of particular interest to compare the
estimators when the efficiency of the IEE estimator,

varopt

varind
=

(uTu)2

uTRuuTR−1u
, (22)

is low. To determine such unfavorable configurations, observe
that if the eigenvalues of R satisfy λmax(R) � λmin(R) and if
u is the average, v̄, of the corresponding eigenvectors, then
equation (22) is of the order λmin(R)/λmax(R). For given σ2,
ρ, and β it is difficult to determine x to obtain such an eigen-
vector average, because x influences both u and R through
the Φi ; so for each combination of σ2 and ρ we have approxi-
mated the unfavorable x by taking it to be v̄ for the matrix
R0, which would obtain for β = 0.
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Table 2
Asymptotic efficiencies (when covariance matrix is known) for 24 × 24 lattice when p = 1, β = 1
and cov(Yi, Yj) = φ(xiβ)φ(xjβ) arcsin(σ2ρ‖si−sj‖). C = condition number of the correlation matrix
when β = 0. 1 : vector of ones; v̄: unfavorable vector; r : pseudorandom numbers. IBEE(k) uses

k × k blocks; Cl(d) uses pairs of sites up to d units apart.

Estimators

Cov matrix IBEE(k) Cl(d)

σ2 ρ C x Ind 2 3 4 1 2 3

1 0.81 0.81 0.81 0.81 0.79 0.78 0.77
0.8 0.90 225 v̄ 0.05 0.27 0.53 0.75 0.15 0.08 0.09

r 0.85 0.92 0.96 0.97 0.92 0.92 0.89
1 0.92 0.92 0.92 0.92 0.90 0.88 0.86

0.8 0.61 21 v̄ 0.32 0.69 0.84 0.91 0.52 0.40 0.41
r 0.86 0.93 0.97 0.98 0.92 0.90 0.88
1 0.98 0.98 0.98 0.97 0.96 0.94 0.93

0.8 0.37 5 v̄ 0.70 0.90 0.95 0.97 0.82 0.75 0.74
r 0.94 0.97 0.98 0.99 0.96 0.94 0.92
1 0.82 0.82 0.82 0.82 0.80 0.79 0.78

0.6 0.90 122 v̄ 0.07 0.23 0.43 0.64 0.15 0.10 0.11
r 0.82 0.92 0.96 0.98 0.88 0.86 0.84
1 0.94 0.94 0.93 0.93 0.91 0.89 0.87

0.6 0.61 13 v̄ 0.42 0.70 0.84 0.91 0.58 0.49 0.50
r 0.91 0.96 0.97 0.98 0.94 0.93 0.91
1 0.99 0.99 0.98 0.98 0.96 0.95 0.93

0.6 0.37 4 v̄ 0.79 0.92 0.96 0.97 0.86 0.82 0.82
r 0.97 0.98 0.99 0.99 0.97 0.95 0.94

Table 2 shows the asymptotic efficiencies of the IEE, CL,
and IBEE estimators for a 24 × 24 lattice, when β = 1. For
each combination of σ2 and ρ we considered three vectors x:
a vector of ones, a vector of uniformly distributed pseudo-
random numbers with mean zero, and v̄ as described above.
In the latter two cases x was normalized to have length
N1/2. We remark that the vector of ones is likely to be fa-
vorable to the IEE estimator, as it is in fact an eigenvector
for the corresponding correlation matrix (σ2ρ‖si−sj‖) in the
one-dimensional (time-series) case.

From Table 2 we first observe that in virtually all cases the
efficiency of the CL estimator decreases as a function of the
maximum distance d in equation (21). Similar results, using
simulations, were observed by Nott and Ryden (1999) in the
context of covariance function estimation for image modeling;
they gave evidence that differential weighting of the pairwise
likelihoods improved performance.

We next note that all three estimators have approximately
the same (relatively high) asymptotic efficiencies when x is
a vector of ones or of pseudorandom numbers, but that the
IEE estimator is relatively inefficient when x = v̄, especially
when the condition number of R0 is high. In these cases the
CL estimator has approximately the same low efficiency, while
the IBEE estimator performs considerably better.

6. Discussion
Albert and McShane (1995) have used GEE to analyze inde-
pendent replications of a relatively small vector Y of spatially
dependent components, using a working covariance matrix ap-
propriate for continuous data. Our method differs in that we
treat a large vector Y, without replications. Also, although

assuming independence between blocks, by using Pearson’s
approximation within the blocks we explicitly take into ac-
count the binary nature of Y; moreover, using the c(I, J, d)
as described preceding equation (17) allows us to explore the
correlation structure on the underlying latent scale on which
it is defined. This is important in view of recent research into
problems with GEE that may arise when using misspecified
working covariance matrices (Heagerty and Zeger, 1996; Qu,
Lindsay, and Li, 2000; Oman and Zucker, 2001; Wang and
Carey, 2003, 2004; Chaganty and Joe, 2004).

Our method has three “tuning parameters”: the IBEE
block size; the distance dmax, used to define neighbors for
estimating the working covariance parameters α = (σ2, ρ)
as described following equation (17); and the subsampling-
window size. We clearly wish to choose the IBEE blocks as
large as is computationally feasible, because the major source
of inaccuracy in our working correlation matrix is its being
block-diagonal. Although our application and the asymptotic
efficiencies in Table 2 suggest this approach should work well
in practice, it would clearly be useful to study the performance
of IBEE in a comprehensive simulation experiment.

Regarding dmax, we also analyzed the vegetation data using
dmax = 25. The computations took only slightly longer than
for dmax = 5, and after eight iterations gave σ̂2 = 0.82 and
ρ̂ = 0.95, essentially the same as equation (18). The regression
coefficient estimates were also very close to those in Table 1,
both in terms of values and significance, and led to identical
subject-matter conclusions. On the other hand, for dmax = 1
the algorithm did not converge, with α̂ alternating between
(0.75, 0.9) and (0.9, 0.75) (approximately). This probably re-
flects the fact that α1 and α2 are interchangeable if d = 1 in
equation (10). Taking dmax = 1 gives only ‖sj − sk‖ = 1, 2

1
2 in
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Figure 4. Relative standard errors for different subsampling-window sizes. Relative standard error for variable i (in
Table 1) is min{σ̂i/|β̂i|, 2}. Horizontal lines indicate significance at 5%, 10% and 15% levels. Window sizes: 8 × 8: ––––––
20 × 22: – – – – – 10 × 11:. . . . . 29 × 31: — — — 15 × 16:- - - - - - 40 × 43:— - — -

equation (15), so that although α is identified, the estimating
equation is ill-conditioned. Increasing dmax to 2, the algorithm
converged after 14 iterations to σ̂2 = 0.89 and ρ̂ = 0.91, some-
what further from equation (18); the regression coefficients
were also less in agreement with Table 1. It thus appears that
for the exponential correlation model, choosing dmax to in-
clude all correlations as low as 0.2 was necessary as well as
adequate. The algorithm can, of course, be used with other
working correlation functions, in which case different criteria
might apply.

To choose the subsampling-window size in our application,
as suggested by Heagerty and Lumley (2000) we estimated
standard errors using a number of window sizes, and then
chose the size giving the largest intercept standard error. Fig-
ure 4 shows the window sizes considered and the resulting
relative standard errors σ̂i/|β̂i| (truncated at 2) for the differ-
ent variables i. For both IEE and IBEE, the standard errors
using different window sizes are generally quite close to one
another, and lead to similar levels of significance for the cor-
responding regression coefficients. An interesting exception
occurs for variable 5 (rd.dist), whose significance level ranges
from approximately 5% to 15% using IEE, as opposed to 15–
27% using IBEE. This somewhat weakens the difference in
conclusions concerning this variable, as discussed in Section
4. On the other hand, the different conclusions of IEE and
IBEE regarding sporadic grazing by cattle (variable 8) still
hold, regardless of the window size used.

Supplementary Materials
Web Appendices A (proofs of the results in Section 3) and B
(software code for the computations in Section 4) are available
under the Paper Information link at the Biometrics website
http://www.tibs.org/biometrics.
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