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abstract: In this note we compare two mathematical models of
foraging that reflect two competing theories of animal behavior: op-
timizing and robust satisficing. The optimal-foraging model is based
on the marginal value theorem (MVT). The robust-satisficing model
developed here is an application of info-gap decision theory. The
info-gap robust-satisficing model relates to the same circumstances
described by the MVT. We show how these two alternatives translate
into specific predictions that at some points are quite disparate. We
test these alternative predictions against available data collected in
numerous field studies with a large number of species from diverse
taxonomic groups. We show that a large majority of studies appear
to support the robust-satisficing model and reject the optimal-
foraging model.

Keywords: optimal foraging, satisficing, robustness, Knightian un-
certainty, info gaps.

The concept of optimal foraging is central to the fields of
behavioral ecology in general and foraging behavior in
particular. The literature on optimal foraging reveals that
data supporting its quantitative predictions are scarcer
than data contradicting such predictions. For example,
Nonacs (2001) surveyed numerous studies that evaluated
a specific behavioral feature of foraging animals, namely,
patch residence time (PRT). Nonacs compared observed
values of PRT to the value predicted by the marginal value
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theorem (MVT), one of the most influential concepts in
optimal-foraging theory (Charnov 1976). From among the
studies reviewed by Nonacs (2001), more than 75% con-
tradicted the predictions of the MVT.

Ward (1992) views the concept of optimal foraging as
an “exemplar” (Kuhn 1974), a term similar to Kuhn’s
earlier definition of “paradigm” (Kuhn 1962). In accord
with Kuhn’s (1962) description of scientists’ reactions
when confronting findings that contradict a prevailing par-
adigm, some authors of those studies, as well as Nonacs
himself, suggested that additional factors need to be ac-
counted for. These authors showed that when one or an-
other factor is added to the model, predictions do agree
with the data. The need for ad hoc modifications suggests
the usefulness of considering alternative paradigms. How-
ever, such alternatives have rarely been considered. In this
note we present a quantitative model of foraging based on
robust satisficing rather than optimization.

Myers (1983) and Ward (1992, 1993) proposed that the
concept of satisficing, developed by Simon (1955) and used
frequently by psychologists (Plous 1993) and economists
(Conlisk 1996), may serve as an alternative working hy-
pothesis to optimal foraging. However, in spite of Ward’s
detailed account of satisficing as an alternative to optimal
foraging more than a decade ago (Ward 1992, 1993), this
hypothesis was not translated into a specific mathematical
model capable of yielding testable predictions. A major
argument against satisficing as an explanation of animal
behavior has been that it does not yield testable predictions
(Stephens and Krebs 1986; Nonacs and Dill 1993). This
note will develop a testable model of satisficing and will
compare this model against field evidence.

Information-gap decision theory (Ben-Haim 2001)
combines Simon’s concept of satisficing, satisfying mini-
mal requirements (Simon 1955) with Knight’s ([1921]
1965) concept of nonprobabilistic uncertainty as opposed
to probabilistic risk. The info-gap concept underlies math-
ematical models in many areas of technology (Ben-Haim
1996, 2005), economics (Ben-Haim and Jeske 2003), proj-
ect management (Ben-Haim and Laufer 1998), conser-
vation biology (Regan et al. 2005), and so on. Here we
define and construct an info-gap decision strategy as an
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alternative to a specific optimal-foraging model. This is
described in detail in “Info-Gap Robust Satisficing.”

In this note we follow Ward and compare two mathe-
matical models of foraging that reflect two competing the-
ories of animal behavior: optimizing and robust satisficing.
The optimal-foraging model is based on the well-known
MVT (Charnov 1976). While many distinct realizations of
the MVT have been studied, we use one specific model as
a prototypical illustration of the widely observed phenom-
enon that measured PRTs are longer than predicted by
optimizing theories. The info-gap robust-satisficing
(IGRS) model developed here is an application of info-
gap decision theory (Ben-Haim 2001). The IGRS model
relates to the same circumstances described by the MVT.
We test these alternative predictions against available data
collected in numerous field studies. We ask whether, given
the available data, there is a difference in the plausibility
of these two models (Hilborn and Mangel 1997, pp. 7–
8).

Optimal Foraging with the Marginal Value Theorem

The specific optimal-foraging model on which we focus
employs the “giving up time” version of the MVT, which
is a deterministic rate-maximization model (Charnov
1976). This concept was discussed by Stephens and Krebs
(1986) among others and is described briefly here. A major
decision made by a foraging animal is whether to continue
foraging in the current patch or to leave and look for a
more profitable patch. The decision is not to quit foraging
in favor of another activity but rather to move to a different
foraging area. The gain from a patch per unit time may
decrease with time because the animal exploits it (possibly
together with other animals). This gives rise to the need
to evaluate current gain against expected gain in other
patches. We will consider situations in which the remaining
foraging time is large compared with the transit time from
one patch to another.

The MVT asserts that in order to maximize its gain, the
animal needs to leave the patch once the following con-
dition is met:

g t ! g t � c, (1)0 1

where t is the time left for foraging (which is large com-
pared with travel time), g0 is the current rate of gain, g1

is the average expected rate of gain in other patches, and
c is the estimated energy cost of travel to the next patch.
The MVT predicts that an animal is expected to leave at
that particular moment. Earlier or later departure would
result in suboptimal exploitation of resources.

Our aim is not to survey optimal-foraging models or
to suggest that equation (1) is superior to other optimal-

foraging models. Rather, this realization of the MVT is
characteristic of the vast array of optimal-foraging models
in that its predictions of PRTs generally fall short of ob-
served PRTs. The aim of this note is to develop an alter-
native concept for foraging models, which is introduced
in “Info-Gap Robust Satisficing.” The performance of this
new foraging model is compared with evidence and
discussed in “Evidence from Foraging Studies” and
“Discussion.”

Info-Gap Robust Satisficing

Info-gap theory provides a quantification of severe Knight-
ian uncertainty, as well as a concept of robustness to this
uncertainty. We will describe these concepts in detail and
will explain the IGRS strategy for PRT. We will compare
this to the foraging strategy based on the MVT.

Performance Function

Consider an animal foraging in patch 0 and contemplating
moving to patch 1. More precisely, the animal must decide
either to remain for t minutes in the current patch or to
move to another patch for t minutes, where the move itself
costs c joules ( ). We assume that the time remainingc 1 0
for foraging is far greater than the travel time to the next
patch. Let gi denote the rate of gain if the animal is in
patch i, in joules/minute. Let s be the decision parameter,
so means “stay in patch 0” while meanss p 0 s p 1
“move to patch 1.” The total gain for decision s is

G(s, g) p g t(1 � s) � (g t � c)s. (2)0 1

Maximizing and Satisficing Behavior

The total gain, is maximized by (moving toG(s, g) s p 1
the new patch) if and only if relation (1) holds, which is
the strategy recommended by the MVT. Maximal gain may
be desirable but need not be mandatory. The lowest ac-
ceptable gain, the minimum required for survival, will be
denoted Gmin. A satisficing strategy is one that yields no
less than the minimum required gain:

G(s, g) ≥ G . (3)min

If Gmin is less than the maximum possible gain, then more
than one strategy may satisfy the gain requirement in equa-
tion (3). When this is the case, then additional consid-
erations can be brought to bear on the choice of a strategy.
Specifically, the strategy can be selected to enhance ro-
bustness to uncertainty or, equivalently, to enhance reli-
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ability or confidence in extracting the needed nourishment
from an uncertain world.

Info-Gap Uncertainty

Now suppose the animal has estimates of the rates of
energy gain in each patch. That is, gi is estimated to be

. Specifically, is the current rate of gain in the patch˜ ˜g gi 0

where the animal is located, and is the animal’s guessg̃1

based on experience (both ontogenetic and phylogenetic
experience) of the rate of gain in other patches. Both of
these numbers are uncertain; is uncertain because theg̃0

future rate of gain here depends on the future supply here,
on future competition here, and so forth, and is un-g̃1

certain because it is a historical average that may not match
future reality. Specifically, is the best available estimateg̃i

of gi, but the error of this estimate is unknown. That is,
the animal has incomplete knowledge of the variability of
gi and limited capability for evaluating strategy options.
The uncertainty in the estimated gain rates undermines
the confidence in attaining the critical gain Gmin.

An info-gap model for unknown fractional error in the
estimated rates of gain is

˜g � gi i˜U(a, g) p g p (g , g ) : ≤ a, i p 0, 1 , a ≥ 0,1 2 F F{ }g̃i

(4)

where is the set of all rates of gain gi that deviate˜U(a, g)
from the estimates by no more than a fraction a. Theg̃i

magnitude of this fractional error is unknown (the animal
does not know how wrong is), so the horizon of un-g̃i

certainty a is unbounded. Thus, the info-gap model,
, , is not a single set of gain rates gi but rather˜U(a, g) a ≥ 0

an unbounded family of nested sets of possible gain rates.
The info-gap model is unbounded in the sense that there
is no largest set and there is no worst case. The set

of gain rates becomes more inclusive as the horizon˜U(a, g)
of uncertainty a increases. Nesting of the uncertainty sets
means that is contained in if . The′ ′˜ ˜U(a, g) U(a , g) a ! a

info-gap model is a quantification of nonprobabilistic
uncertainty.

Robust Satisficing Behavior

The robustness, , of decision s is defined here asâ(s, G )min

the greatest horizon of uncertainty a up to which the
actual gain is no less than the critical value Gmin for all
realizations of the gain rates g:

â(s, G ) p max a : min G(s, g) ≥ G . (5)min min{ ( ) }
˜g�U(a, g)

We can read this relation from left to right as follows. The
robustness of decision s with minimal foraging require-â

ment Gmin is the maximum horizon of uncertainty a up
to which the minimal gain , for all gain rates gG(s, g)
available at uncertainty a (namely, those in ), is no˜U(a, g)
less than the critical value Gmin.

Robustness to uncertainty implies confidence in attain-
ing the critical foraging requirement. A central idea that
we will develop in subsequent discussion is that more ro-
bustness is preferred to less robustness at the same critical
gain Gmin. That is, robustness has fitness value. Choice s
is preferred over s′ if the attainment of gain Gmin is more
robust to uncertainty with s than with s′:

′ ′ˆ ˆs � s if a(s, G ) 1 a(s , G ). (6)min min

An opportunity cost is paid when the animal chooses one
patch over another; the animal forgoes the advantage that
the rejected patch might have yielded. Robustness is ob-
tained in exchange for the opportunity cost. Robustness
to the uncertain future, , is a measure of con-â(s, G )min

fidence in survival. The animal’s fitness is enhanced by
enhancing the confidence that the selected patch will yield
at least the critical level of energy. The patch-selection rule
in relation (6) states that more confidence in survival is
preferable over less confidence.

Evaluating the Robustness

We now evaluate the robustness function of equation (5)
with the info-gap model of equation (4). We assume that
the animal needs a positive amount of energy ( )G 1 0min

and that the estimated rates of energy gain are positive
( ). One finds that the robustness functions for theg̃ 1 0i

two choices of s are

Gmin ˜1 � if G ≤ g tmin 0â(0, G ) p , (7)g̃ tmin { 00 else

G � cmin ˜1 � if G ≤ g t � cmin 1â(1, G ) p . (8)g̃ tmin { 10 else

These robustness functions are shown in figure 1 for
and in figure 2 for the case that .˜ ˜ ˜ ˜g t � c ! g t g t � c 1 g t1 0 1 0

These figures show how the robust-satisficing strategy se-
lects between the two choices, (stay in the currents p 0
patch) and (move to the new patch), based on thes p 1
criterion of greater robustness, relation (6).
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Figure 1: Robustness versus critical gain if , for which the˜ ˜g t � c ! g t1 0

nominal (and marginal value theorem) choice is .s p 0

Figure 2: Robustness versus critical gain if , for which the˜ ˜g t � c 1 g t1 0

nominal (and marginal value theorem) choice is .s p 1

In figure 1 we see that is always preferred, whichs p 0
is also the MVT recommendation because . In˜ ˜g t � c ! g t1 0

figure 2 we see that the choice is more robust ands p 1
hence preferred if only low robustness against uncertainty
is required, while the choice is preferred if larges p 0
robustness is required. The crossing of robustness curves
in figure 2 implies reversal of preference between the op-
tions that those curves represent. That is, the choice in-
dicated by the MVT, equation (1), holds here only if un-
certainty is low. If, however, uncertainty is high, then the
IGRS recommendation is to stay, while the MVT rec-
ommendation is to move because .˜ ˜g t � c 1 g t1 0

Time to Move

We can carry this example one step further and make some
testable predictions. This is based on the idea of robustness
premium, , which is illustrated in figure 2. TheˆDa(G )min

robustness premium of decision (stay put) over de-s p 0
cision (move) is the increment in robustness thats p 1
is guaranteed by over the robustness that is guar-s p 0
anteed by . The robustness premium is a functions p 1
of the critical gain requirement Gmin and is formally defined
as

ˆ ˆ ˆDa(G ) p a(0, G ) � a(1, G ). (9)min min min

Strategy is preferred, in terms of robust satisficing,s p 0
over strategy if and only if is positive.ˆs p 1 Da(G )min

The function is somewhat complicated be-ˆDa(G )min

cause and are each piecewise linearˆ ˆa(0, G ) a(1, G )min min

as seen in equations (7) and (8). Nonetheless, one can
readily establish the following necessary and sufficient con-
dition for positive robustness premium:

˜cg0˜ ˜ ˜g t ≤ g t � c and G ! ≤ g t0 1 min 0˜ ˜g � g1 0ˆDa(G ) 1 0 if and only if or .min {˜ ˜ ˜g t 1 g t � c and G ! g t0 1 min 0

(10)

The upper conditions on the right correspond to figure 2,
and the lower conditions correspond to figure 1. In the
upper condition, the term is the value of Gmin

˜ ˜ ˜cg /(g � g )0 1 0

at which the robustness curves cross in figure 2. Decision
is more robust than when ˜ ˜s p 0 s p 1 G ! cg /(g �min 0 1

, which must be less than in order for to˜ ˜ ˆg ) g t a(0, G )0 0 min

be strictly positive.
The implications of the robustness premium in equation

(10) are summarized in table 1. We now explain the four
rows of this table.

Row A. First consider , which means that, ac-˜ ˜g 1 g0 1

cording to available estimates, the current patch is more
productive than the next patch. Thus, , so the˜ ˜g t 1 g t � c0 1

condition of figure 1 holds. Equation (10) implies that the
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Table 1: Strategy choices based on robust satisficing, equation (10), and the MVT, equation (1)

Differential
productivity

(1)

Remaining
foraging

time
(2)

MVT
condition

(3)

MVT
strategy

(4)

Critical
gain
(5)

Robustness
premium

(6)

Robust
satisficing
strategy

(7)

A ˜ ˜g 1 g0 1 t ≥ 0 ˜ ˜g t 1 g t � c0 1 s p 0 ˜G ≤ g tmin 0 ˆDa(G ) 1 0min s p 0

B ˜ ˜g ! g0 1

c
t ! ˜ ˜g �g1 0 ˜ ˜g t 1 g t � c0 1 s p 0 ˜G ≤ g tmin 0 ˆDa(G ) 1 0min s p 0

C ˜ ˜g ! g0 1

c
t 1 ˜ ˜g �g1 0 ˜ ˜g t ! g t � c0 1 s p 1

˜cg0G !min ˜ ˜g �g1 0 ˆDa(G ) 1 0min s p 0

D ˜ ˜g ! g0 1

c
t 1 ˜ ˜g �g1 0 ˜ ˜g t ! g t � c0 1 s p 1

˜cg0G 1min ˜ ˜g �g1 0 ˆDa(G ) ! 0min s p 1

Note: value theorem.MVT p marginal

robustness premium is positive for all . Hence,˜G ≤ g tmin 0

is the preferred robust-satisficing strategy, provideds p 0
the required gain Gmin is not greater than . This agreesg̃ t0

with the MVT recommendation.
Row B. Now suppose and that .˜ ˜ ˜ ˜g ! g t ! c/(g � g )0 1 1 0

Thus, again , so the condition of figure 1 holds.˜ ˜g t 1 g t � c0 1

Hence, is the robust-satisficing preferred strategy,s p 0
provided the required gain Gmin is not greater than .g̃ t0

This agrees with the MVT recommendation.
Row C. Again suppose but now .˜ ˜ ˜ ˜g ! g t 1 c/(g � g )0 1 1 0

Now , so the condition of figure 2 holds.˜ ˜g t ! g t � c0 1

Hence, , and is preferred only ifˆDa(G ) 1 0 s p 0min

. This disagrees with the MVT˜ ˜ ˜ ˜G ! (cg /g � g ) ≤ g tmin 0 1 0 0

recommendation.
Row D. Finally, suppose and . Again˜ ˜ ˜ ˜g ! g t 1 c/(g � g )0 1 1 0

, so the condition of figure 2 holds. Now˜ ˜g t ! g t � c0 1

, and is preferred ifˆDa(G ) ! 0 s p 1 G 1min min

. This agrees with the MVT˜ ˜ ˜ ˜min [cg /(g � g ), g t]0 1 0 0

recommendation.

Do Foragers Optimize or Satisfice?

Which strategy, MVT optimization or IGRS, best describes
foraging behavior? Comparing columns 4 and 7 of table
1, we see that the two models agree in rows A, B, and D
and disagree in row C. That is, discrimination between
robust satisficing and MVT optimizing must concentrate
on situations defined by this disagreement.

We will reject IGRS and not reject MVT if, under the
conditions of row C and columns 1, 2, and 5, PRTs cor-
respond to, or are shorter than, MVT predictions. We will
reject MVT and not reject robust satisficing if the PRT
exceeds the MVT prediction only when all of the following
three conditions hold: first, the current patch is estimated
to have subaverage rate of gain (row C, col. 1); second,
much time remains for foraging (row C, col. 2); and third,
the organism is in a situation of low stress, meaning that
the critical gain need not be too great (row C, col. 5).

We stress that only in this threefold constellation do the
two models disagree; the MVT strategy is to move (s p

) while the robust-satisficing strategy is to stay put1
( ). Note, however, that such constellations may bes p 0
very common, perhaps prevailing, for most animals during
their foraging activities. Evidence discussed in the next
section will indicate that field studies usually correspond
to the constellation in row C of table 1 and may therefore
be interpreted as supporting exclusively one or the other
of these theories.

Evidence from Foraging Studies

We surveyed the literature1 and selected all studies that
satisfied the following two criteria: first, the study provides
field or lab test of the MVT and second, results of the
study enable direct comparison between MVT-predicted
PRT and actual PRT. We found that 26 studies satisfied
these criteria, representing a diverse range of taxa, of which
24 were used previously by Nonacs (2001).

We inspected all these articles to assess whether they
comply with the set of conditions that characterizes row
C in table 1 and whether their results may rightly serve
to distinguish between the two models. The first condition
(col. 1) is “gain in current patch is less than average.” If
the gain in the current patch is more than average, then
both models would prescribe a stay. All surveyed studies
met this simple condition.

The second condition is that much time remains for
foraging (col. 2). In both types of studies that we evaluated,
field observations and lab experiments, foragers were fol-
lowed for a long period during each day of study; typically,
multiple sessions totaling several hours were carried out
daily. In some of these studies, results of the last foraging
hour were not used in the analysis (Lima 1985; Kamil et

1 We used the ISI Web of Science to select all items with the keyword “marginal

value theorem” published from 1977 onward.
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al. 1988), and these studies fully met condition 2 (much
time remains for foraging). In other studies, the animals
were free to continue foraging after the hours of formal
trials (Roitberg and Prokopy 1982). All the surveyed stud-
ies contained numerous trials or observations in each day
of the study. Thus, apparently, the vast majority of the
data from each study reflect situations where there is much
time left for foraging.

The third condition (col. 5) is that the critical gain,
which is the minimal gain required to ensure survival, is
relatively low, and the animal is not on a tight budget. In
the present context, quantifying the critical gain is not
feasible. However, there are indications that this condition
is met in most, if not all, of the surveyed studies. Some
studies of lab experiments report that the animals had
unrestricted access to water and food throughout the pe-
riod of the experiment (Ydenberg 1984; Lima 1985; De-
vries et al. 1989). In other studies, the animals had a diet
that kept them at 80%–90% of their original body weight
(Hanson and Green 1989; Cassini et al. 1990; Kamil et al.
1993; Todd and Kacelnik 1993). In general, the animals
were kept in benign conditions without predation risk.
Another indication that the lab conditions were not too
harsh for the animals is that all animals in all of these
studies survived the entire experiment period, and not a
single death was reported. In conclusion, there seems to
be a general matching between the conditions in row C
of table 1 and the conditions of most (if not all) experi-
ments, at least during most of the experimental period.

The studies were classified according to whether their
empirical average PRT values were longer than MVT pre-
dictions (and thus supportive of IGRS), equal to MVT
predictions, or inconsistent with both MVT and IGRS.
Details of all studies appear in the appendix in the online
edition of the American Naturalist.

Nineteen studies reported significantly longer than
MVT-expected PRTs, as predicted by the IGRS but not by
the MVT, possibly reflecting row C in table 1. Row C
represents that constellation of conditions in which IGRS
and MVT have different predictions, and it is here that
evidence can distinguish between these two models. An
additional four studies reported average PRTs similar to
predictions of the MVT model. Three additional studies
contradicted both models, indicating either shorter PRTs
than MVT predictions or shorter and longer PRTs in rich
and poor patches, respectively. In summary, the prepon-
derance of the evidence is consistent with the IGRS par-
adigm and conflicts with the predictions of the MVT.

Discussion

The notion of optimization in animal behavior, as well as
in economics, refers to the principle of maximizing gain,

which determines animal and human decision making
(studied by ethologists and economists, respectively). This
concept has long been employed as a paradigm; it is well
embedded in our worldview, and it directs the way re-
searchers conceive their discipline and interpret their re-
sults. This way of thinking is appealing perhaps because
it prescribes a very simple answer to the question “‘How
much?”—an answer that is always precise: “as much as
possible.”

Theories based on optimization strategies are readily
tested because they entail precise predictions. This vul-
nerability to falsification is a virtue for a scientific theory,
as Popper (1965) has described in his analysis of the meth-
odology of science. Theories based on satisficing rather
than optimization sometimes suffer from lack of falsifi-
ability, which has rightly been pointed out to be a serious
deficiency of these theories (Stephens and Krebs 1986, p.
180). One contribution of this note is to develop a model
of foraging behavior based on robust satisficing and to
show its vulnerability to falsification against observation.

The notion of optimization as a paradigm of actual
behavior has been questioned on the grounds of bounded
rationality (Simon 1955), referring to limitations on the
ability of an animal (or a person) to find an optimal so-
lution. Limitations may stem from imperfect information,
imperfect information-processing capabilities, and envi-
ronmental variability in space and time. Knight ([1921]
1965) stressed that information may be so deficient, and
conditions may be so variable, that probabilistic models
are inaccessible; under severe uncertainty, one simply can-
not choose a probability distribution.

The approach adopted here, IGRS, is one possible quan-
tification of bounded rationality and Knightian uncer-
tainty. A solution that is good enough for the animal to
survive, even if suboptimal, may be more robust (in the
sense developed here) than a gain-optimizing solution. We
have derived and discussed such a solution in “Info-Gap
Robust Satisficing.” Given the uncertainties mentioned
above, a reliable and adequate solution is preferable to an
optimal but unreliable solution.

It might be argued that robust satisficing due to infor-
mation limitations or processing constraints is congruent
with optimal foraging with these constraints. After all,
optimal-foraging theory has never assumed that animals
have perfect knowledge of the environment or intricate
mathematical capabilities to calculate optimal solutions
(Stephens and Krebs 1986). However, optimal-foraging
theory implicitly assumes mechanisms of foraging choice
that approximate optimal strategies (Stephens and Krebs
1986). In contrast, our work shows that a gain-optimizing
strategy based on models with nonprobabilistic Knightian
info gaps may have low or zero robustness to those info
gaps. A strategy with positive robustness may differ from
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a gain-optimizing strategy, as illustrated in figure 2. A
satisficing strategy does not try to approximate a gain-
optimal solution and may choose a suboptimal strategy
(Janetos and Cole 1981). As we have seen, a robust-
satisficing strategy can be suboptimal in gain but more
robust (and hence more reliable) than the optimal strategy.
The robust-satisficing approach to animal decision making
is distinct from optimal foraging. It prescribes quantitative
predictions that sometimes differ from those of optimal
foraging and, as exemplified here for patch-leaving rules,
may correspond better to available data.

Nonetheless, the IGRS strategy entails Pareto optimi-
zation,2 trading off one (or several) variables against an-
other variable that defines a surface of optimal or maxi-
mally efficient options. Pareto optimal surfaces are shown
in figures 1 and 2 in which energy gain is traded off against
robustness to uncertainty. The importance of state vari-
ables in biological modeling has been emphasized by Man-
gel and Clark (1988). Robustness can be viewed as an
additional state variable, along with other state variables
such as energy gain, physiological state, reproductive
status, predation risk, and so forth. All these other state
variables are substantive physiological or environmental
parameters that impact the fitness of the individual in the
objective and concrete struggle for survival. The substan-
tive state variables all interact, through traditional biolog-
ical laws, in ecological processes.

Robustness is qualitatively different. Robustness is ep-
istemic,3 not physiological or environmental. It impacts
fitness in a distinctive manner. Robustness assesses the
reliability with which a given strategy will achieve specified
goals. Because these goals—for example, energy require-
ments—relate directly to survival, the assessment of reli-
ability of achievement is pertinent to survival when the
animal must choose a strategy.

The fitness value of robustness can be explained syl-
logistically as follows. First, sufficient energy intake is nec-
essary for survival. Second, more reliable sufficient intake
is preferable over less reliable sufficient intake when the
animal selects a patch. Thus, finally, maximal reliability of
sufficient intake is an optimal selection strategy. The
robust-satisficing strategy (maximize robustness of ade-
quate energy gain) will coincide with the classical energy-
optimizing strategy when the robustness curves do not

2 “Pareto optimality, the state of a system … when there is no alternative in

which there is at least one person better off and no one worse off” (Oxford

English Dictionary).

3 Epistemic: “of or relating to knowledge or knowing; cognitive” (Merriam-

Webster’s Collegiate Dictionary); “of or relating to knowledge or degree of

acceptance” (Oxford English Dictionary). Much work on decision under un-

certainty distinguishes between epistemic and objective (real-world) uncer-

tainty. See Helton and Oberkampf 2004.

cross, as in figure 1. However, robust satisficing and energy
optimization can differ when robustness curves cross, as
in figure 2.

Of course, it is also true that more energy is better than
less energy. The point is that both energy and robustness
are necessary properties of a good decision. In other words,
the animal’s optimization problem is a Pareto trade-off of
robustness against energy rather than a pure energy-
optimization problem. Attempting solely to optimize en-
ergy intake may endanger the animal because a maximal
energy-intake strategy has zero robustness to info gaps.

Optimization takes many forms. For instance, new op-
timization criteria reflect the effect on foraging decisions
of competitive or cooperative interactions among foragers
(Giraldeau and Caraco 2000). This work does not con-
tribute to social foraging theory but shares with that body
of work the revision of classical optimization criteria. We
have shown that by considering the Knightian uncertain-
ties—info gaps—that confront the forager, the classical
optimization problem becomes embedded in a Pareto
trade-off of robustness versus energy gain.

Our syllogistic argument for the fitness value of robust
satisficing applies to any optimization strategy, including
stochastic optimization. The specific implementation of
IGRS developed in this note focuses on uncertainty in the
gain rates g in a deterministic analysis of energy intake. A
similar argument could focus on uncertainty in probability
functions, for example, uncertain tails of a probability den-
sity. A stochastically optimal strategy may have low ro-
bustness to uncertainty in the functions on which it is
based. This would imply that a patch with suboptimal but
adequate and reliable intake may be preferred over a patch
with optimal but unreliable intake. Once again, the pref-
erence between robust satisficing and optimization de-
pends, as in our example, on whether, and where, the
robustness curves cross.

We have argued that epistemic limitations imply that
performance should be satisficed rather than optimized.
Satisficing is the satisfaction of minimal requirements or
specifications, making the performance good enough, as
distinct from optimizing the performance. Satisficing
leaves additional design degrees of freedom open with
which to enhance the robustness of the system. Engineers
use design specifications to robustly satisfice and meet
design code requirements rather than optimize perfor-
mance. Satisficing and bounded rationality were intro-
duced into economics by Simon (1997), who recognized
the infeasibility of optimization in many contexts. Simi-
larly, Alchian (1977, p. 16) points out the impossibility of
reliably planning the maximization of profit in dynamic
environments. The attainment of global optimization in
biological systems is unlikely in light of the vast number
of genotypal possibilities (Holland 1975, pp. 9, 17).
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The seeds of the idea of satisficing can be found in
Darwin’s thought. Darwin ([1859] 1909) observed that
alien species colonized in a new region can dominate suc-
cessful aborigines as a result of the newcomers’ superior
fitness, which, as Simon (1983, p. 69) pointed out, illus-
trates that evolutionary success is a measure of compar-
ative advantage rather than universal optimality. The
search for comparative advantage is a satisficing strategy
(don’t optimize, just beat the competition), suggesting that
biological systems may evolve by balancing performance
against robustness to info gaps rather than by optimizing
functionality. The outcome of Darwinian evolution is the
survival of the more fit over the less fit, not necessarily of
the most fit, which again illustrates the importance of
comparative advantage rather than optimality. As we have
seen in our analysis of foraging, suboptimal decisions
can be more robust than, and hence preferable to,
performance-optimal decisions. Darwin ([1859] 1909, p.
378) also pointed to the “great fact” that similar habitats
in the Old and New Worlds have “widely different … living
productions!” Optimization would tend to produce similar
phenotypes under similar constraints; robust satisficing
produces diversity as a result of the added degrees of free-
dom associated with performance suboptimality.

The IGRS strategy defined in “Info-Gap Robust Satis-
ficing” could be modified in many ways. One could use
a different performance function than equation (2), for
instance, by including the time of transit between patches.
One could use a different info-gap model than equation
(4) for uncertainty in the anticipated gain rates , forg̃i

instance, by allowing lower uncertainty in the current
patch than in the unvisited patch. One could also modify
the robustness function in equation (5) to include satis-
ficing on several parameters, not only the total remaining
foraging gain. This note aims to demonstrate the power
and the potential of IGRS strategies, which might find
other manifestations in foraging, as well as in other areas
of biology including, for instance, mate selection, nest-
building techniques, predator-evasion strategies, and so
on.
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