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Controlling Data Uncertainty via Aggregation
in Remotely Sensed Data

Yohay Carmel

Abstract—Aggregation may be used as a means of enhancing
remotely sensed data accuracy, but there is a tradeoff between loss
of information and gain in accuracy. Thus, the choice of the proper
cell size for aggregation is important. This letter explores the
change in data accuracy that accompanies aggregation and finds
an increase in image thematic accuracy with increasing cell size,
resulting from 1) reduction in the impact of misregistration on
thematic error and 2) mutual cancelation of inverse classification
errors occurring within the same cell. A model is developed to
quantify these phenomena. The model is exemplified using a
vegetation map derived from an aerial photo. The model revealed
a major reduction in effective location error for cell sizes in the
range of 3–10 times the size of mean location error; reduction in
effective classification error was minor.

Index Terms—Aggregation, classification error, error analysis,
misregistration.

I. INTRODUCTION

I N RASTER DATA, aggregation (sometimes referred to as
image degradation) is a process of laying a grid of cells on

the image (cell size pixel size), and defining the larger cells
as the basic units of the new image. When pixels are aggregated
into larger grid cells, the information on pixel-specific location
is lost. However, the attribute information is retained and can be
used to estimate cell composition (e.g., cell-specific percentage
cover for each class) [1].

Several studies have suggested that reduction of spatial reso-
lution enhances data accuracy significantly [2]–[5]. On the other
hand, the decrease in spatial resolution involves a loss of in-
formation that may be valuable for particular applications [6].
Thus, users could benefit from viewing the actual plot of data
accuracy as a function of spatial resolution and could choose the
specific spatial resolution and its associated uncertainty level
that best suits a specific application. The goal of this letter is to
explore the relationship between spatial resolution and data ac-
curacy and to develop a model that quantifies this relationship
for thematic (“classified”) images.

Image thematic error stems from two sources: classification
error and location error. The latter component refers to the im-
pact of misregistration on thematic error; it becomes relevant
in change detection analyses and in any multilayer GIS anal-
ysis. Thus, two types of gain in accuracy are expected when spa-
tial resolution is degraded and cells are aggregated: a gain from
reducing the impact of location accuracy on overall thematic
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Fig. 1. Location error effect on attribute accuracy. In this example, all pixels
within a grid cell are shifted identically, where e and e denote the x and
y components of location error, respectively. Pixels in region 1 would remain
within the cell, and attribute accuracy at the cell level would not be affected.
Pixels in region 2 would be shifted into neighboring cells and may result in
attribute error. The effective location error � is the proportional area of region
2 in the cell (3).

accuracy and a gain from canceling out some inverse misclassi-
fications within each cell.

II. MODEL

A. Location Accuracy

For a single pixel, misregistration is translated into thematic
error if its “true” location is occupied by a pixel belonging to
a different class. Let us define the probability that a pixel is
assigned an incorrect class due to misregistration loc

loc (1)

where and are pixel coordinates, is the class assigned to
the pixel, and are the and components of cell-spe-
cific location error, respectively. Thus, loc depends on the
magnitude of location error and on image heterogeneity. loc
can be estimated empirically for a given image, based on image
pattern and the magnitude of location error.

Considering a larger cell size A, let us define a similar prob-
ability, loc , which is the probability that a pixel within the
framework of a larger cell was misclassified due to misregis-
tration. For cell sizes larger than location error, this probability
would be lower than the original probability loc , since mis-
registration would shift a certain proportion of the pixels only
within the grid cell, and for those pixels, thematic error is can-
celled at the grid cell level (Fig. 1). This probability is denoted
by

loc loc (2)

where is the proportion of a cell of size in which location
error actually transgresses into neighboring cells and may, thus,
result in attribute error (Fig. 1). This proportion ( ) is termed
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Fig. 2. Effective location error � as a function of cell size. Average location
error is set to 1 unit in both x and y directions. Cell size varies between 1 and
25 times the magnitude of location error.

here the effective location error. It is a function of cell size
and of location error magnitude. The effective location error
is the proportional area of region 2 in the cell (see Fig. 1) and is
denoted by

(3)

where location error components and are assumed
constant for all pixels within a single cell. Using (3), the reduc-
tion in effective location error when cell size increases may be
illustrated easily for the special case where (Fig. 2).
Effective location error declines rapidly from 1 for cell sizes
less than or equal to the magnitude of location error, to 0.36 for
cell sizes five times the magnitude of location error (Fig. 2).

Location error may vary largely across an image. Thus,
loc , and loc should ideally be estimated for each grid

cell in the image. This requires that location-error components
and are available at the grid-cell level. Typically,

location error information is available for several locations (test
points) only. Interpolation methods such as kriging may be
used to construct location error surfaces for both and
[7]. The practice of shifting the image against itself [2], [3], [8]
may be used in order to derive cell-specific loc . Following
(1), a specific cell is shifted by and on the
and axes, respectively. loc is estimated as the proportion
of pixels that are “misclassified” due to the shift. Equations (2)
and (3) may then be used to derive cell-specific and loc .
This process is repeated for each cell in the image, and the
global mean of these parameters can then be calculated.

An alternative to this process, which may be less accurate but
much simpler to apply, is to assume a constant error across the
image. The average location error is typically defined as root-
mean-square error (RMSE), decomposed here into its and
components (only RMSE is presented)

RMSE (4)

where is the component of the deviation between the
true location of a test point and its location on the image, and

is the number of test points. In order to determine loc , the
whole image is shifted by RMSE and RMSE on the and

axes, respectively. loc is estimated for the entire image as
the proportion of pixels that are “misclassified” due to the shift.

, and loc can then be calculated for the entire image, using
(2) and (3).

B. Classification Accuracy

The probability that a pixel is misclassified [ cls ] may be
estimated as the proportion of misclassified pixels in the image.
The probability that class pixel is assigned to class due to mis-
classification cls can be estimated from the error matrix as

cls (5)

where is the number of class pixels in a cell and is
the number of class pixels misclassified as in that cell. This
simple method to calculate cls follows the common prac-
tice in classification accuracy assessments and ignores the het-
erogeneous nature of classification error (e.g., error is more
likely to occur near edges between classes). An alternative to
this method was recently suggested [9], [10], where kriging is
used to construct classification error surface. The same method
may be used here to estimate cell-specific cls .

Considered within the framework of grid cells, classification
error may be reduced when cell size increases. Consider the case
of two pixels within the same grid cell, class pixel misclassified
as and class pixel misclassified as . At the cell level, where
pixel information is reduced to proportion cover of each class
in the cell, both errors cancel out each other. The probability for
a pixel to be misclassified within the frame of a larger cell ,

cls , can be calculated as

cls cls (6)

where is the proportion of misclassified pixels in the cell that
were not canceled out at the grid-cell level. is dependent on
cell size and on the spatial pattern of the image (since it is a
function of the number of pixels of each class in each grid cell).
Thus, should be estimated for each classification error pair
ij separately. is dependent on the number of both and
misclassification types. The abundance of these misclassifica-
tions is denoted by and , respectively. In what follows, ,

, and are cell-specific. Consider a cell that contains many
class pixels and many class pixels. It is expected that some
misclassified pixels , as well as several misclassified
pixels , will be present in that cell. is calculated locally
as the product of the number of class pixels in the cell and

cls

cls (7)

In order to calculate , we need to know the spatial relation-
ship between and misclassified pixels in each grid cell. If

, then all misclassifications are canceled, and an
equal quantity of misclassified pixels is canceled as well. In
that case, the effective misclassification rate is 0, and the
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Fig. 3. Cell-level error probabilities p (loc) for location error and p (cls)
for classification error, as a function of cell size. Cell size is in meters.

effective misclassification rate is . Thus,
is denoted by a conditioned term as follows:

if
if (8)

Using (4), (6), and (7), can be calculated for each ag-
gregated cell in the image. Next, can be determined as the
weighted average of all

(9)

Average can be calculated for the whole image, for a range of
or cell sizes, and the reduction in effective classification error
that accompanies the aggregation process can be illustrated.

C. Model Application

The process is exemplified using a vegetation map derived
from a 1995 aerial photo of Carmel Valley, CA, for which ex-
tensive information on both types of error is available [3]. In the
original image, pixel size is 0.6 m. Location error components
RMSE and RMSE are 1.86 and 1.68 m, respectively, and
the proportion classified correctly PCC is 0.91. Here, model pa-
rameters were estimated assuming error homogeneity for both
error types.

The probabilities of error at the pixel level, derived from the
error matrices constructed for both location error and classifica-
tion error (data from Carmel et al. [6, Table 4]) were loc

and cls . When estimated for a range of cell sizes,
decreased notably from 0.83–0.07, when cell size changed

from 3–60 m. For the same range, decreased moderately from
0.95–0.8. Accordingly, loc diminished from 0.19 to
in the same range, while the decrease in cls was negligible
(Fig. 3).

III. DISCUSSION

Several studies have noted the large impact of misregistra-
tion on data accuracy [2], [3], [11]. Moreover, Carmel et al. [6]
found that its contribution to overall thematic error is larger than
that of classification error. Thus, estimating the effective loca-
tion error would yield a crude approximation of the impact of

aggregation on thematic accuracy. This procedure is simple (es-
pecially if RMSE is taken to represent ): solve (3) for a range
of relevant cell values, and portray as a function of cell size
(Fig. 2).

The impact of aggregation on classification accuracy can be
viewed by drawing , the effective classification error, as a func-
tion of cell size. Estimating is more complex, while this letter
finds that the impact of aggregation on classification error is
much smaller than that of location error. In highly fragmented
images, may be more prominent.

Further information can be gained by estimating the actual
probabilities of error, loc and cls , for various aggre-
gation levels. However, this stage requires additional calcula-
tions and spatially explicit simulations that manipulate the ac-
tual image.

IV. CONCLUSION

The methodology developed here provides an effective tool
for assessing the impact of aggregation on thematic accuracy
and evaluating it against information loss, in order to decide on
a proper level of image aggregation. Current results show that
the most effective reduction in error is achieved when cell size is
in the range of 3–10 times the size of average location error, but
image-specific error rates may somewhat alter this conclusion.
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