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Abstract

Relationships between species composition and its environmental determinants are a basic objective of ecology. Such
relationships are scale dependent, and predictors of species composition typically include variables such as climate,
topographic, historical legacies, land uses, human population levels, and random processes. Our objective was to quantify
the effect of environmental determinants on U.S. mammal composition at various spatial scales. We found that climate was
the predominant factor affecting species composition, and its relative impact increased in correlation with the increase of
the spatial scale. Another factor affecting species composition is land-use–land-cover. Our findings showed that its impact
decreased as the spatial scale increased. We provide quantitative indication of highly significant effect of climate and land-
use–land-cover variables on mammal composition at multiple scales.
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Introduction

Understanding the factors that affect the distribution of

biodiversity in time and space is a central objective of ecology

[1]. Relationships between environmental variables (e.g., climate,

topography) and biodiversity patterns are scale-dependent, both

spatially and temporally [2]. Species richness, probably the most

studied aspect of biodiversity, has often been shown to vary as a

function of spatial scale [3,4].

Theories concerning the mechanisms governing distribution

patterns of biodiversity measures range from global (latitudinal

species richness gradient) to very local scales, and relate to

environmental, historical and evolutionary processes [5]. Most

studies concentrate on species richness as a measure of

biodiversity, resulting in various theories and hypotheses offering

mechanistic explanations for patterns of species richness. These

explanations are related to interspecific interactions and climate

conditions [6], energy levels [7], area effects [8], neutral theory [9]

and others. However, the mechanistic explanations for species

richness patterns do not necessarily extend to explanations of

species composition patterns. Two areas may hold a similar

number of species, while the identity of the species might differ

considerably, rendering species richness of little value to

differentiate between them [10]. Recently, it has been suggested

that species richness patterns are largely determined by historical-

biogeographical processes [11].

Here we focus on patterns of species composition, rather than

species richness. Theories on species composition patterns include

a neutral model, which suggests that all variations are caused by

random differences in the dispersal of demographically and

competitively equal species [9,12]; an environmental model,

which relates species distributions to environmental conditions

[13]; and a model that claims that species composition is

determined by interspecific interactions within and between

trophic levels [14].

Although species composition has rarely been studied at

multiple spatial scales, there are exceptions such as the studies of

Grand and Cushman [15] and Grand and Mello [16], in which

scale was defined qualitatively, i.e., plot, patch and landscape

scale. However, most studies on species composition were

restricted to a single scale [17,18,19,20]. Applied across multiple

scales, multivariate analyses may provide a wider picture of the

relationships between environmental variables and species com-

position [21,22]. Understanding species composition – environ-

ment relationships, and specifically how they are affected by

spatial scale, may improve the ability of conservationists to predict

both the spatial distribution of biodiversity, and its reaction to

global and regional changes [23].

There are serious conceptual and practical impediments to such

analyses. A central conceptual challenge is the nature of scale [24].

Scale is characterized by both grain (grid cell size) and extent [25].

In most studies, a change of only a single element of scale is

regarded as a full change of scale [26]. Here we used a ‘‘complete’’

approach, in which both grain and extent are modified together in

the process of upscaling (see Appendix S1 for details).

The major practical impediment for such analyses is data

availability [27]. Presence-absence data are only available for

relatively small extents [27]. Presence-only (occurrence) data in

large quantities and for diverse taxonomic groups have become

available in the last decade via data portals such as the Global

Biodiversity Information Facility (GBIF) and other portals that

allow easy access to digitized databases, mostly based on museum
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and university collections [28]. However, presence-only data are

often considered improper for such analyses, due to a range of

inherent biases [29,30]. The validity of using presence-only data in

ecological analyses has been studied repeatedly in the context of

modeling the distribution of a single species or modeling species

richness patterns, but results are inconclusive [31]. In a previous

study [32], we evaluated the reliability of using presence-only data

for studying multiscale diversity patterns based on taxonomic or

functional group composition. The assessment confirmed that

presence-only data are sufficient for analyzing the relationships

between species composition and environmental determinants.

The objective of the current study was to quantify the variation in

the relationships between mammal species composition and its

environmental determinants, at varying spatial scales. More

specifically, we hypothesized that climate is the predominant

environmental factor affecting species composition at large scales.

An additional hypothesis was that land-use and land-cover

(LULC) variables are highly influential at fine spatial scales,

however, when grain size is large enough to contain all (or most) of

the possible LULC types, the effect of those variables will diminish.

Regarding topography and primary productivity, we hypothesized

that their effect will be more prominent at small scales.

Results

Variable group effects
Climate and Land use – Land cover (LULC) variables explained

the largest amount of variance in community composition at all

spatial scales of the analyses (Fig. 1). The amount of variance

explained by LULC variables decreased gradually until the

seventh scale (grain size 1,280 km2,,extent 1.3*106 ), and then

dropped sharply from ,30% of the total explained variance to

,15% between scales 7 and 9. Climate, which explained a slightly

smaller proportion of the variance in species composition than

LULC variables at the six smaller six scales, also showed a

decrease in the amount of explained variance until scale 7, but

then exhibited an increase between scales 7 and 10. Topography

and primary production explained a relatively small amount of

variance in species composition at all the analyzed scales. In

general, the proportion of explained variance in species compo-

sition decreased with increasing scale, except at the largest scale,

where both variable groups exhibited a moderate increase (Fig. 1).

The correlation between effective gradient length of the different

variable groups and the proportion of variance in species

composition explained by each group was intermediate (Pearson’s

r = 0.44, Fig. 2).

Within - group analyses
Within the group of climatic variables, all four variables had

equal contribution to the variance explained by the group at the

four smallest scales (Fig. 3a). However, at the larger scales mean

annual temperature was the predominant climatic feature.

Precipitation seasonality also explained a relatively high propor-

tion of the total explained variance at three of the five largest scales

(Fig. 3a).

In the topography group, Altitude generally explained a larger

proportion of the variance in species composition compared to

altitude range. However differences were relatively small at the

small scales and larger at the larger scales (Fig. 3b). Land-cover

variables in the LULC group explained most of the variance in

that group at all scales (Fig. 3c). However, when we plotted the

mean standard deviation in land cover variables, within the LULC

groups (i.e., agriculture, forestry etc.), we found that the decrease

in the amount of variance explained by LULC variables (Fig. 1)

corresponded to a sharp decrease in the variance in the land cover

variables at the eighth scale (Fig. 4).

Discussion

Our analyses revealed that at grain sizes of 101 to 105 km2 and

extents from 105 to 108 km2 respectively, mammal species

composition is affected largely by climate and LULC variables.

LULC variables had sizeable influence on species composition at

the smaller scales, probably via habitat degradation and

fragmentation, and ultimately, habitat loss [33]. Topography

was not a prominent factor in these analyses, but it is probably

more important at finer scales [34]. These results partially

corroborate our hypotheses. As we hypothesized, climate is indeed

a predominant factor affecting mammal species composition

within the contiguous USA. However, at smaller scales, LULC

variables are more influential, and explain a larger amount of

variance in species composition than climate. This is consistent

with theoretical predictions that at fine scales, effects of climatic

determinants are obscured by biological interactions and that the

effect of climate becomes more evident at larger scales [26]. Also

corroborating our hypotheses is our finding that, at the largest

scales, as the variance within sampling units increases and the

variance between them decreases, LULC become less explanatory.

We found intermediate correlation levels between the effective

gradient lengths (for an explanation of effective gradient length

please see Methods and Materials section) and the amount of

variance in species composition explained by the different variable

groups. This suggests that there is a change in the reaction of

species composition to environmental gradients varies among

scales, although some of that change is attributable to differences

in gradient lengths. Wiens [26] described a phenomenon called

scale-domains, based on a review of studies that used different

sized quadrats to study patterns of plant distributions. He

suggested that the change in distribution patterns of ecological

phenomena observed with scale is monotonous within each scale-

domain. In contrast, between domains, pattern variability is

chaotic and unpredictable, manifested as high variability between

sampling units. Accordingly, our findings indicate that between the

seventh and eighth scales there is a possible a shift from one scale

domain to another, in both climate and LULC variable groups

(Fig. 1). The existence of scale domains is possibly indicated here

by the shift in the direction and slope of the line in Figure 2. The

high levels of explained variance attributed to land-cover (i.e.,

forestry, agriculture, urban area, etc.) suggest that at all scales, land

cover type is the predominant human related factor affecting

mammal species composition.

This study, to the best of our knowledge, is among the first to

analyze the relationships between species composition and the

environmental conditions that affect it at large and multiple spatial

scales [but see for example 35]. We found that scale was a

prominent factor in these relationships, having a greater impact

than that of geographical factors that affect environmental

conditions within each scale. This line of research has the

potential to contribute much to the understanding of global

biodiversity patterns. Studying other taxonomic groups and other

regions of the world would be an important step towards

establishing a knowledge base of these relationships, which in

turn may serve to test general biogeography theories.

Materials and Methods

Our data consisted of all occurrence records found in the GBIF

portal [36] of terrestrial mammals (excluding bats) in the

contiguous USA. All data were downloaded from GBIF during

Multiscale Species Composition Analyses
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March–June 2009. Bats were excluded from the analyses under

the assumption that the ecological demands and responses of bats

to environmental variables may be very different than all other

mammals, and thus may decrease the probability of elucidating

coherent answers to our questions. Our dataset consisted of

,308,000 records, including 284 species. It originated from ,70

datasets within GBIF. We used all geo-referenced records of

specimens and observations in the datasets, with the exception of

records with less than four decimal digits in at least one coordinate

(either latitude or longitude).

In addition to mammal occurrence data, we compiled

environmental data related to 15 variables, which we categorized

according to 4 groups: climate; topography; land-use/land-cover

(LULC); and primary productivity (Table 1). The spatial

resolution of all environmental layers was (or was reduced to)

0.0833u (,10 km). As a measure of anthropogenic disturbance we

Figure 1. Explained variance rates of environmental variable groups in mammal species composition at varying spatial scales in the
contiguous USA (demonstrated using CCA analyses). Scale consists of grain size (upper number on the x-axis) and extent (lower number on
the x-axis). Explained variances represent the pure effect of each variable group used in the analyses (see Table 1 for details on the different variable
groups).
doi:10.1371/journal.pone.0025440.g001

Figure 2. Mean values of standard deviation in environmental variables (for detailed description of variables see Table 1). For
convenience, values are presented as averages in intervals of 0.05. Pearson’s correlation between SD and % explained variance is 0.44.
doi:10.1371/journal.pone.0025440.g002
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Figure 3. Explained variance rates of individual environmental variables in mammal species composition: a) climatic variables; b)
topographic variables and c) LULC variables. Land cover is the combined effect of six land cover categories (agriculture, forestry, open
herbaceous, urban, water and wetland). Prec_sea and Temp_sea stand for precipitation seasonality and temperature seasonality respectively; Altitude –
rng stands for altitude range; DTU stands for distance to nearest urban area; and Pop density stands for population density.
doi:10.1371/journal.pone.0025440.g003

Figure 4. Mean value of standard deviation in land-cover variables (for detailed description of variables see Table 1) per spatial
scale analyzed.
doi:10.1371/journal.pone.0025440.g004

Multiscale Species Composition Analyses

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25440



measured the average distance to nearest urban area in 0.00833u
(,1 km) grid in the entire study area, using the Euclidean distance

function in ArcMap [37] with a polygonal urban area layer (see

Table 1). We then calculated the mean value of the distance to

nearest urban area in each cell in the grid, at each spatial scale.

Seasonality in climatic variables, i.e. temperature and precipitation

(Table 1), was represented by inter-month variance. The data were

downloaded as GIS layers from Worldclim [38]. The coefficient of

variation (CV) was the measure of variance used to represent

precipitation seasonality. Seasonality in temperature was repre-

sented as standard deviation, as CV makes no sense when values

are between 21 and 1. For more details see the Worldclim website

http://www.worldclim.org/bioclim.

To analyze the effects of scale on community composition, we

wrote an ArcGIS python script that generated sets of rectangular

sampling units of extent E and grain g at each scale (Table 2). At

each scale, the area of a grid cell is twice the area of a cell in the

previous scale. The value of each environmental variable in a cell

was calculated as the average of the respective values in all pixels

contained within that cell. In each sampling unit, the script

counted the number of pixels that had species observations in

them and the total number of species in those observations. We

then identified sampling units that had sufficient information for a

Canonical Correspondence Analysis (the CCA) analysis by setting

thresholds for numbers of species and pixels with observations. For

the subsequent statistical analysis, we only used sampling units that

had more than five species and at least 30 pixels with non-

singleton observations. For each sampling unit that complied with

the thresholds, and at each scale, we ran a partial Canonical

Correspondence Analysis (pCCA) using the vegan package [39] in

the R statistical software package, version 2.12 [40]. The

difference between CCA and pCCA is that pCCA decomposes

the explained variance to its components, i.e. it allows determining

how much of the variance is explained by individual variables or

variable groups. This is accomplished by using the variable(s) of

interest as constraints (i.e. explanatory variables) and the rest of the

environmental variables as conditioning variables (also termed co-

variables). Thus, the proportions of the variance explained by the

conditional variables alone and by the interactions between the

variable(s) of interest and the conditioning variables, are accounted

for [for a detailed description of pCCA see 21]. We ran pCCA for

each variable using the vegan package (Oksanen et al. 2011) in the

R statistical software package, version 2.12 (R Development Core

Team 2010). For pCCA, we split the environmental variables into

four groups: climate (mean annual temperature, temperature

seasonality, mean annual precipitation and precipitation season-

ality), topography (elevation and elevation range); land-use land-

cover (distance to urban areas, population density, and percent-

ages of agriculture, forest, grasslands, urban, surface waters, and

wetland areas); and NDVI. We then ran pCCA for each group

separately, using its variables as the constraints, while using all

other variables as conditioning variables [13,21,22,41]. In addition

we analyzed each individual variable as the constraint, using all

other variables as conditioning variables, in order to differentiate

the various variables within each group. To calculate the amount

of variance in species composition explained by each variable and

each group, we divided the inertia of each group in each sampling

unit by the overall inertia in the respective sampling unit, and

multiplied it by 100. Total inertia is an expression of the amount of

variance in the species data within the sampling units [22], and

individual inertia is equivalent to the amount of variance that is

related solely to the specific variable or group of variables, after

accounting for the variance explained by other variables and the

interaction between the different variables [21].

In order to discriminate between the effect of effective

environmental gradient length and the amount of variance in

species composition that is explained by that gradient, we

calculated effective gradient lengths of the different variable

groups within the sampling units. Effective gradient length is

related to the amount of variance of a variable within the entire

dataset. We calculated the effective gradient length by standard-

izing all variables so that they ranged between 0 and 1, and

calculating the cumulative standard deviation within each variable

group, which is the standard deviation in each variable group

Table 1. Environmental variables used in the analyses, and their source.

Variable name Description Source

Temperature Worldclim [38]

Temperature seasonality Standard deviation of monthly temperature values

Precipitation

Precipitation seasonality Coefficient of variation of monthly precipitation values

Altitude Worldclim [38]

Alt_Range

NDVI MODIS – http://glcf.uniacs.umd.edu/data/ndvi

Pop-Density Population density FAOGeoNetwork http://www.fao.org/geonetwork/em/mainhome

Urban* Urban area

Forestry* Forest

Open-Herbaceous* Herbaceous vegetation

Agriculture* Agricultural area

Water* Large water body

Wettland* Wetland area

Distance to Urban Distance to nearest urban area calculated at a fine
resolution (0.0083u) and averaged for each grid-cell

Data were extracted from ESRI data files

*denotes values based on % coverage of categorical variables.
doi:10.1371/journal.pone.0025440.t001
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across all scales. Next we correlated that group’s variance with the

amount of variance that was explained by that group. High

correlation coefficient values indicate strong effect of effective

gradient length while low correlation values suggest effect of scale

independent of differences in gradient length. In addition, in order

to understand the sharp decrease in the amount of species

composition variance explained by land-cover variables within the

LULC variable group, we calculated the mean value, over the five

different categories of land-cover (agriculture, forestry, open-

herbaceous, urban and water), and then over the different units, of

the standard deviation in those variables. A decrease in that value

would indicate that the level of variance within the units is

decreasing, i.e. each unit is composed of more components. A

sharp decrease in intra-unit variance of land-cover variables

should manifest as a decrease in the explanatory power of that

group, in explaining the variance in species composition.
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